

Via E-Mail

June 27, 2017

Town of Chapel Hill Public Works Facility 6850 Millhouse Road Chapel Hill, NC 27516

Attn: Mr. Curtis Brooks

Re: Phase II Environmental Site Assessment American Legion 1714 Legion Road Chapel Hill, North Carolina <u>H&H Job No. TCH.003</u>

1.0 Introduction

In accordance with our authorized scope of work, Hart & Hickman, PC (H&H) completed a Phase II Environmental Site Assessment (ESA) at the American Legion property located at 1714 Legion Road in Chapel Hill, North Carolina (site or subject site). The site includes one 35.12-acre parcel of land developed with an approximately 8,375 square foot building previously occupied by the American Legion Outpost #6 and an approximately 3,075 square foot building currently occupied by Studio A DanceArts. The site was developed with the present day structures in the early 1960s. A site location map is provided as Figure 1, and a site map is provided as Figure 2.

H&H completed a Phase I ESA on the Site in January 2017 and identified the following recognized environmental condition (REC):

• During our site visit, H&H observed staining on the concrete surface of the attached maintenance shed. The shed is used to store a lawnmower and various maintenance products associated with the lawnmower, including oil and gasoline. A floor drain was observed in the center of the slab. Staining was observed over portions of the concrete

slab, including in the immediate vicinity of the floor drain. The staining appeared to have been the result of possible spills from light maintenance operations and leaks from the lawnmower. The concrete in the area of the staining appeared to be in fair condition as H&H observed that cracking to the concrete appeared to be superficial. Interviews with longtime American Legion members familiar with the Site indicated that the floor drain may discharge into a septic system that was located nearby and may still be present. Conclusive information was not available concerning what sources discharge into the septic system or whether a septic system ever existed. Although the amount of petroleum products stored in the vicinity of the drain is not significant, the potential for discharges of petroleum products to the subsurface via the septic tank leach field over many years creates a potential concern. Based on the uncertainty regarding the discharge point for the floor drain, the potential for the drain to discharge to a septic system, the age of the building, and the staining in the vicinity of the drain; H&H considers the staining associated with the attached maintenance shed a REC.

Our proposed scope of work to conduct Phase II ESA activities to evaluate the above-mentioned REC is presented in the following sections.

2.0 Phase II Scope of Work

Based on the results of the Phase I ESA, H&H conducted soil and groundwater assessment activities at the site on March 1, 2017, March 15, 2017 and May 16, 2017.

The initial Phase II activities occurred on March 1, 2017 for the purpose of assessing the REC associated with the maintenance shed floor drain. While on-site, H&H was informed by a representative from American Legion that the grassy area between the main building and the woods had previously been filled with soil that was removed from the site currently occupied by Performance BMW on Durham-Chapel Hill Boulevard.

During the initial Phase II activities, the soil sample collected from the area of the suspected leach field had a concentration of Total Petroleum Hydrocarbons in the diesel range (TPH-DRO) that exceeded the North Carolina Department of Environmental Quality (DEQ) Action Level. As such, H&H revisited the site on March 15, 2017 to further evaluate the petroleum impacted soil in this area by collecting another soil sample from the same location and depth, and analyzing the soil by constituent-specific analysis. The results of the analysis determined that the soil from this location contained three petroleum related compounds that exceed the DEQ's Maximum Soil Contaminant Concentrations (MSCCs), thus requiring additional assessment.

After learning about the potential fill area on the east side of the main building, the Town of Chapel Hill reviewed an internal Pollution Sources geodatabase and identified a potential historic dump area on the site. According to the Town's personnel, the identification of the site on this geodatabase was likely from a site visit by the Town where trash was observed on the site. During a subsequent site visit on May 5, 2017, H&H observed several piles of debris in the wooded area east of the main building.

On May 16, 2017 H&H conducted supplemental Phase II activities at the site. The supplemental scope of work included additional assessment of the soil and groundwater associated with the suspected leach field. In addition, H&H advanced soil borings in the grassy area to assess the fill material for the potential presence of buried debris (see Section 2.2), and further assessed the extent of the debris in the woods (see Section 2.4).

The Phase II ESA assessment activities are detailed in the following sections.

2.1 Utility Clearance

Prior to conducting soil and groundwater assessment activities, H&H contacted North Carolina One-Call, the state public utility locator to mark subsurface utilities located on the Site. In addition, Stewart Engineering, Inc. (Stewart) of Raleigh, North Carolina, a private utility locater

and engineering company, was contracted to locate and demark subsurface utilities in the areas of the soil borings and to identify the location of the suspected septic system and leach field. As an additional safety precaution, each boring was initially advanced using a hand auger to a depth of five feet below ground surface (ft bgs) to clear the boring of possible undocumented subsurface utility lines.

During Stewart's utility clearance, they were able to identify the underground piping associated with the floor drain, and the location where it connects to the main septic line on the southeast side of the building. Stewart traced the drain line to the driveway, but was unable to locate the drain line, the septic tank, or the drain field on the southeast side of the driveway.

2.2 Soil Assessment Activities

H&H performed soil sampling activities at the Site on March 1, March 15, and May 16, 2017. A description of the field activities is presented below. As described below, eight of the soil borings (SB-1 through SB-8) were advanced in locations to assess potential impacts associated with the floor drain and suspected septic system. The remaining four borings (SI-1 through SI-4) were advanced in locations to assess the potential presence of buried debris. The locations of the borings are indicated on Figures 3 and 4.

H&H utilized Regional Probing Services, Inc. (Regional Probing) to advance four soil borings (SB-1 through SB-4) on March 1, 2017 using a Geoprobe[®] direct-push technology (DPT) drill rig and hand auger methods. H&H advanced one soil boring (SB-5) using hand auger methods on March 15, 2017. H&H utilized Quantex, Inc. (Quantex) to advance seven soil borings (SB-6 through SB-8, and SI-1 through SI-4) on May 16, 2017 using, DPT, air rotary, and hand auger methods.

During boring advancement, soil samples were field screened for the presence of odor, staining, and elevated photoionization detector (PID) readings. Soil boring logs are included in Appendix

A. Based upon field screening, H&H selected one soil sample from borings SB-1 through SB-8 for laboratory analysis. Soil samples collected from SI-1 through SI-4 were field screened, but were not submitted for laboratory analysis.

A summary of soil sample locations and analyses associated with the floor drain and suspected septic system is presented below.

- SB-1 was located inside the maintenance shed adjacent to the floor drain. The soil boring was advanced to a depth of 5 ft bgs. Based upon the observed low level PID readings, a soil sample was collected from the 1 to 2 ft interval below the base of the drain and submitted for laboratory analysis of Total Petroleum Hydrocarbons in the diesel range (TPH-DRO) and in the gasoline range (TPH-GRO) by EPA Method 8015C.
- SB-2 was located outside the maintenance shed where the pipe leading from the floor drain mergers with the main septic line leading from the building. The soil boring was advanced to a depth of 5 ft bgs. Based upon the observed low level PID readings, a soil sample was collected from the 2 to 3 ft interval beneath the base of piping and submitted for laboratory analysis of TPH-DRO and TPH-GRO by EPA Method 8015C.
- SB-3 was advanced on the southeast side of the driveway in the suspected septic tank location. The soil boring was advanced to a depth of 12 ft bgs. Based upon the observed low level PID readings, a soil sample was collected from the 4 to 5 ft interval beneath the base of where the suspected septic tank may have been and submitted for laboratory analysis of TPH-DRO and TPH-GRO by EPA Method 8015C.
- SB-4 was advanced further to the southeast and topographically downgradient of SB-3 in the suspected location of the leach field. The soil boring was advanced to a depth of 14 ft bgs. Based upon slightly elevated PID readings at 11 ft bgs (40.1 parts per million

[ppm]), a soil sample was collected from the 10 to 11 ft interval and submitted for laboratory analysis of TPH-DRO and TPH-GRO by EPA Method 8015C.

- SB-5 was advanced in the immediate vicinity of SB-4 to a depth of 11 ft bgs. A soil sample was collected from the 10 to 11 ft interval and submitted for constituent-specific laboratory analysis of volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, volatile petroleum hydrocarbons (VPH) by the Massachusetts Department of Environmental Protection (MADEP) method, and extractable petroleum hydrocarbons (EPH) by the MADEP method.
- SB-6 was advanced northeast and downgradient of SB-4/SB-5 to a depth of 13 ft bgs. Based upon the observed low level PID readings, a soil sample was collected from the 5 to 7 ft interval within the portion of the soil profile expected to be beneath the septic leach field and submitted for laboratory analysis of TPH-DRO by EPA Method 8015C.
- SB-7 was advanced southeast and downgradient of SB-4/SB-5 to a depth of 14.5 ft bgs. Based upon the observed low level PID readings a soil sample was collected from the 10 to 12 ft interval within the portion of the soil profile expected to be beneath the septic leach field and submitted for laboratory analysis of TPH-DRO by EPA Method 8015C.
- SB-8 was advanced southwest and cross-gradient of SB-4/SB-5 to a depth of 13.5 ft bgs. Based upon the observed low level PID readings a soil sample was collected from the 4 to 6 ft interval within the portion of the soil profile expected to be beneath the septic leach field and submitted for laboratory analysis of TPH-DRO by EPA Method 8015C.

Soil samples were collected into laboratory-supplied containers, which were then sealed, labeled, placed into a laboratory-supplied sample cooler, and covered with ice. The cooler was delivered by H&H to couriers from Con-Test Analytical Laboratory (SB-1 through SB-4) and Prism

Analytical Laboratory (SB-5 through SB-8) and shipped using standard chain-of-custody protocol to the laboratory for analysis.

A summary of soil sample locations associated with the fill material and potential presence of buried debris is presented below.

- SI-1 was advanced in the grassy area to the northeast of the main building to a depth of 13.0 ft bgs. Visual staining, and olfactory or PID evidence of organic vapors were not detected in the soil cores collected from this boring. Evidence of debris or landfill material was not present in this boring.
- SI-2 was advanced in the grassy area to the east of the main building to a depth of 13.0 ft bgs. Visual staining, and olfactory or PID evidence of organic vapors were not detected in the soil cores collected from this boring. Evidence of debris or landfill material was not present in this boring.
- SI-3 was advanced in the grassy area, near the wood line, to the east of the main building to a depth of 13.0 ft bgs. Visual staining, and olfactory or PID evidence of organic vapors were not detected in the soil cores collected from this boring. Evidence of debris or landfill material was not present in this boring.
- SI-4 was advanced in the grassy area, near the wood line, to the southeast of the main building to a depth of 17.0 ft bgs. Small pieces of asphalt (less than 1" thick) were observed in the soil collected between 3 ft bgs and 15 ft bgs. However, PID evidence of organic vapors was not detected in the soil cores collected from this boring. Although small pieces of asphalt were observed, evidence of debris or landfill material was not present in this boring.

2.3 Groundwater Assessment Activities

H&H installed one temporary monitoring well (TMW-1) at the site to evaluate the potential for groundwater impacts. The location of the temporary well is depicted on Figure 3.

The temporary monitoring well was advanced to a depth of 39 ft bgs using hollow stem auger and air rotary drilling techniques. The temporary well was constructed with 1-inch diameter PVC casing and a 10-ft screen set to bracket the water table. During installation of the temporary well, soil was logged for lithologic description and screened for indications of impacts including visual observation for staining and field screening for the presence of organic vapors using a calibrated PID, and groundwater was observed for the presence of free product or discolored water. No significant soil or groundwater impacts were observed in the field and no soil samples were collected for laboratory analysis during the temporary monitoring well installation. The well boring log is included in Appendix A.

After well installation and prior to sampling, H&H purged the monitoring well by removing at least three well volumes using a peristaltic pump. Once three well volumes had been removed from the well, purging continued using low flow methods until field parameters stabilized. A groundwater sample was collected from the temporary well and submitted to Prism Analytical Laboratory for analysis of VOCs by EPA Method 602 (with xylenes), polycyclic aromatic hydrocarbons (PAHs) by EPA Method 625 (including base, neutral and acid extractables, plus the 10 largest non-target peaks), and VPH and EPH by the MADEP method.

2.4 Assessment Activities – Debris in Woods

While on-site for the initial Phase II activities, H&H was informed by a representative from American Legion that the grassy area between the main building and the woods had previously been filled with soil that was removed from the site currently occupied by Performance BMW on Durham-Chapel Hill Boulevard.

After learning about the potential fill area on the east side of the main building, the Town of Chapel Hill reviewed an internal Pollution Sources geodatabase and identified a potential historic dump area on the site. According to the Town's personnel, the identification of the site on this geodatabase was likely from a site visit by the Town where trash was observed on the site. During a subsequent site visit on May 5, 2017, H&H observed several piles of debris in the wooded area to the east of the main building (see Figure 4). The debris appears to consist of material that may have come from a building renovation (e.g. asphalt shingles, some metal items, a downspout, some foam insulation, a pile of asphalt), and/or from general trash disposal (e.g. a lawn mower, a plastic table, some type of heater unit). According to a representative from American Legion, this debris / trash has been on the slope in the woods for as long as they could remember.

During the subsequent Phase II activities on May 16, 2017, H&H further evaluated the debris to determine if it was surficial, or if it may be associated with additional buried material. H&H pulled some of the debris material away from the slope and generally observed soil beneath the debris. H&H also advanced a hand auger into the slope in several locations, and did not observe evidence of debris or landfill material in the borings.

As described in Section 2.2, four soil borings were advanced in the grassy area between the main building and the woods. Two of these borings (SI-3 and SI-4) were advanced adjacent to the wood line in an attempt to determine if the debris on the slope extended into the subsurface. Other than some small pieces of asphalt noted in SI-4, evidence of buried debris or landfill material was not observed in the soil borings.

2.5 Boring Abandonment and Investigation Derived Waste

Upon completion of the soil and groundwater sampling activities, H&H directed Quantex to abandon the soil borings and temporary monitor well by filling the borings with hydrated

bentonite and/or grout, and patching the surfaces to match the surrounding area. Because no evidence of significant impacts was observed (i.e. free phase product), soil cuttings and purge water generated during the assessment activities were spread on-site in accordance with DEQ guidance.

2.6 QA/QC Process

H&H utilized standard quality assurance/quality control (QA/QC) processes during the Phase II ESA activities. Non-dedicated sampling equipment, including DPT tooling, the water level meter, and the hand auger, were decontaminated using Liquinox[®] detergent and deionized water prior to and between each sampling location. H&H, Regional Probing, and Quantex wore nitrile gloves while handling samples. Soil and groundwater samples were collected in laboratory-provided containers and placed on ice immediately after collection. A completed chain-of-custody (COC) record accompanied the samples and included the sample designation, date and time collected, matrix, sample container information, and requested analyses.

3.0 Site-Specific Topography, Geology, & Hydrogeology

3.1 Topography

The elevation of the Site is between approximately 300 and 330 feet above mean sea level. A north/south trending ridge traverses the central portion of the site with the topographic gradient sloping down to the south/southeast and to the southwest. An area topographic map is included as Figure 1.

3.2 Geology and Hydrogeology

Regional Geology and Hydrogeology

The Site is located in the Piedmont Physiographic Province of North Carolina. The land surface of the area is generally characterized as gently sloping, which may become moderately steep where intersected by streams.

According to the *Geologic Map of North Carolina* dated 1985, the Site lies within the Triassic Basin of the Piedmont. Underlying bedrock in the Site area is mapped as being part of the Chatham Group, which is comprised of arkosic sandstone. In the Piedmont, the bedrock is overlain by a mantle of weathered rock termed saprolite or residuum. The saprolite consists of unconsolidated clay, silt, and sand with lesser amounts of rock fragments. Due to the range of parent rock types and their variable susceptibility to weathering, the saprolite ranges widely in color, texture, and thickness. Generally, the saprolite is thickest near interstream divides and thins toward streambeds. In profile, the saprolite normally grades from clayey soils near the land surface to highly weathered rock above the competent bedrock.

The occurrence and movement of groundwater in the Piedmont is typically within two separate but interconnected water-bearing zones. A shallow water-bearing zone occurs within the saprolite, and a deeper water-bearing zone within the underlying bedrock.

Groundwater in the shallow saprolite zone occurs in the interstitial pore spaces between the grains comprising the saprolite soils. Groundwater in this zone is typically under water table or unconfined conditions. Groundwater movement is generally horizontal from recharge areas to small streams that serve as localized discharge points.

Secondary joints, fractures, faults, and dikes within the bedrock control the occurrence and movement of groundwater in the underlying water-bearing zone within the crystalline bedrock. On a regional scale, the direction of groundwater flow is typically from uplands to major streams and groundwater sinks. The saprolite has a higher porosity than the bedrock and serves as a reservoir that supplies water to a network of fractures in the bedrock.

Site Geology and Hydrogeology

Specifically for the Site, groundwater flow is expected to mimic topography and flow to the south/southeast or to the southwest. Groundwater was not encountered at the Site before reaching refusal at approximately 12 to 18 ft bgs.

The shallow soil at Site consists primarily of silt and clay. The maximum depth of soil sampling was approximately 18 ft bgs. In each boring, DPT refusal was encountered between 12 and 18 ft bgs. Air rotary drilling was utilized to advance through the saprolite to a depth of 39 ft bgs in TMW-1. Groundwater was encountered in TMW-1 at approximately 32 ft bgs.

4.0 Analytical Laboratory Results

The results of analyses of the soil samples are summarized in Table 1. The laboratory analytical data reports and chains-of-custody record are included as Appendix B.

The analytical results for the soil samples collected on March 1, 2017 indicate that low levels of TPH-DRO were detected in soil boring SB-1 (6.7 mg/kg), SB-2 (4.5 mg/kg), and SB-3 (23 mg/kg), which are below the DEQ Action Level of 100 mg/kg. Additionally TPH-GRO was not detected above laboratory reporting limits in borings SB-1 SB-2, SB-3, or SB-4.

However, in boring SB-4, TPH-DRO was detected in the suspected septic leach field area. A concentration of 110 mg/kg was exhibited in SB-4, which exceeds the DEQ Action Level of 100 mg/kg.

In accordance with the NC DEQ's *Guidance for Initial Abatement, Assessment, and Corrective Action for Non-UST Releases of Petroleum* (Non-UST Guidelines), if the TPH Action Level is exceeded, constituent-specific and/or carbon-fraction analytical methods may be used to further assess contaminant concentrations in the soil. The effective action level for analytical results

produced by these methods is the Soil-to-Groundwater Maximum Soil Contaminant Concentration (MSCC) for each constituent or carbon fraction.

The results of analysis of the soil sample collected on March 15, 2017 indicate various volatile organic compounds (VOCs), one semi-volatile organic compound (SVOC), one extractable petroleum hydrocarbon (EPH), and two volatile petroleum hydrocarbons (VPH) were detected above laboratory reporting limits in SB-5. 1-methylnapthalene (0.53 mg/kg) was detected above the MSCC of 0.004 mg/kg. Additionally, C9-C10 aromatics (110 mg/kg) and C11-C22 (93 mg/kg) were detected above their MSCC (31 mg/kg) in the soil sample.

The results of analysis of the soil samples collected on May 16, 2017 indicate that low levels of TPH-DRO were detected in soil boring SB-6 (9.9 mg/kg) and SB-7 (14 mg/kg), which are below the DEQ Action Level of 100 mg/kg. TPH-DRO was not detected in the soil sample collected from SB-8.

The results of analysis of the groundwater sample collected on May 16, 2017 indicate that no VOCs, EPH, VPH, or polycyclic aromatic hydrocarbons (PAHs) were detected above laboratory reporting limits in TMW-1, with the exception of one unknown PAH (25 ug/L).

5.0 Findings

H&H conducted Phase II ESA activities at the Site to assess the potential for impact in the vicinity of the floor drain located in the maintenance shed, the suspected septic tank, and the suspected septic leach field east of the American Legion building. In addition, H&H assessed soil in the grassy area between the main building and the wood line for the potential presence of buried debris, and further assessed the extent of the debris in the woods. The results of the assessment activities indicate the following:

- Results of the soil sampling did not indicate the presence of TPH-DRO and TPH-GRO above DEQ Action Levels in the area of the floor drain and the suspected septic tank (SB-1 through SB-3).
- Results of the soil sampling indicated the presence of TPH-DRO slightly above the DEQ Action level of 100 mg/kg as well as 1-methylnapthalene, C9-C10 aromatics, and C11-C22 aromatics above their respective MSCCs in the samples collected from the suspected leach field (SB-4/SB-5).
- Results of the soil sampling did not indicate the presence of TPH-DRO above DEQ Action Levels in the area surrounding SB-4/SB-5 in an approximately 50 foot radius (SB-6 through SB-8). The minor soil contamination detected in the suspected leach field appears to be limited to the area of SB-4/SB-5.
- Results of the groundwater sampling did not indicate the presence of VOCs, EPH, VPH, or PAHs above laboratory reporting limits in TMW-1, with the exception of one unknown PAH. The laboratory could not identify the PAH detected in the sample. Due to the absence of any other VOCs, EPH, VPH, or PAHs in the groundwater sample, the unknown PAH is not expected to present a concern that groundwater has been impacted by petroleum contaminants.
- Results of the soil sampling in the grassy area between the main building and the wood line did not indicate the presence of buried debris.
- The debris observed on the slope in the woods appears to be surficial in nature.

6.0 Conclusions

Based upon the results of the assessment activities associated with the floor drain and the suspected septic tank and leach fields, the data indicates a minor petroleum impact in the soil beneath the suspected leach field. The data also indicate the horizontal extent of the TPH-DRO impact exceeding the DEQ's Action Level is limited to the general vicinity of SB-4/SB-5. The results of the groundwater sampling indicate that groundwater beneath the suspected leach field is not contaminated with petroleum-related constituents. H&H recommends either removing the floor drain or filling it with concrete. H&H does not recommend further assessment of the soil and groundwater associated with the suspected leach field at the site.

Based upon the results of the assessment activities associated with the fill material that was reportedly placed on the east side of the main building, it appears the fill material consists of soil and not buried debris. Therefore, H&H does not recommend further assessment of this area.

Based upon the results of the assessment activities, the debris in the woods appears to be surficial. From an aesthetics standpoint, the Town may want to consider removing the debris and disposing of it in a landfill.

Thank you for the opportunity to assist with this project. Should you have any questions or require any additional information concerning this report, please feel free to contact us at (919) 847-4241.

Sincerely, *Hart & Hickman, PC*

Joseph E. Starr, PE Senior Consultant

Tomas Will Assistant Project Environmental Scientist

Attachments: Table 1: Summary of Soil Analytical Results

Figure 1: Site Location Map Figure 2: Site Map Figure 3: Sample Location Map Figure 4: Debris Location Map

Appendix A: Soil Boring Logs Appendix B: Laboratory Analytical Data Report

Tables

Table 1 Summary of Soil Analytical Data Town of Chapel Hill - American Legion Chapel Hill, North Carolina H&H Job No. TCH-003

Location	In shed near drain	East of shed near septic line	Suspected septic tank	Suspected septic leach field	Next to SB-4	Northeast of SB- 4/SB-5	Southeast of SB- 4/SB-5	Southwest of SB- 4/SB-5	Action Level ¹	MSCCs ²
Sample ID	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8	Action Level	110003
Depth (ft bgs)	1-2	2-3	4-5	10-11	10-11	5-7	10-12	4-6		
Sample Date	3/1/2017	3/1/2017	3/1/2017	3/1/2017	3/15/2017	5/16/2017	5/16/2017	5/16/2017		
Units	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
<u>GRO (8015C)</u>	< 1.0	< 0.85	< 1.2	< 1.2	NA	NA	NA	NA	50	
DRO (8015C)	6.7	4.5	23	<u>110</u>	NA	9.9	14	< 8.6	100	
EPH (MADEP EPH)						•		•		
C11-C22 Aromatics	NA	NA	NA	NA	93	NA	NA	NA		31
VPH (MADEP VPH)										
C9-C12 Aliphatics	NA	NA	NA	NA	75	NA	NA	NA		540
C9-C10 Aromatics	NA	NA	NA	NA	110	NA	NA	NA		31
<u>VOCs (8260B)</u>										
1,2,4-Trimethylbenzene	NA	NA	NA	NA	0.0089	NA	NA	NA		8.5
1,2-Dichlorobenzene	NA	NA	NA	NA	0.0073	NA	NA	NA		0.23
4-Isopropyltoluene	NA	NA	NA	NA	0.025	NA	NA	NA		0.12
Chlorobenzene	NA	NA	NA	NA	0.0053	NA	NA	NA		0.44
Ethylbenzene	NA	NA	NA	NA	0.0078	NA	NA	NA		4.9
Naphthalene	NA	NA	NA	NA	0.13	NA	NA	NA		0.16
n-Butylbenzene	NA	NA	NA	NA	0.0092	NA	NA	NA		4.3
n-Propylbenzene	NA	NA	NA	NA	0.017	NA	NA	NA		1.7
sec-Butylbenzene	NA	NA	NA	NA	0.015	NA	NA	NA		3.3
<u>SVOCs (8270D)</u>										
1-Methylnaphthalene	NA	NA	NA	NA	0.53	NA	NA	NA		0.004

Notes:

1) Action Levels are specified by the NC DEQ Guidelines for Initial Response and Abatement, Asessment, and Corrective Action for Non-UST Releases of Petroleum, July 2012, and were updated in July 2016. Represents the concentration of a contaminant that if exceeded may require further regulatory action such as cleanup or monitoring.

2) Soil-to-Water Maximum Soil Contaminant Concentrations (MSCCs) for Non-UST releases; the concentration of a soil contaminant at which no further cleanup actions are required based upon the risk of harm posed by the contaminant Sample results are only displayed for constituents detected above laboratory reporting limits

Bold indicates concentration exceeds the MSCCs

Bold and Underline indicates concentration exceeds the Action Level

Method number follows parameter in parenthesis

VOCs = volatile organic compounds; SVOCs= semivolatile organic compounds; EPH= extractable petroleum hydrocarbons; VPH= volatile petroleum hydrocarbons

NA = not analyzed; NS = not specified; -- = not applicable or not available

mg/kg = milligrams per kilogram

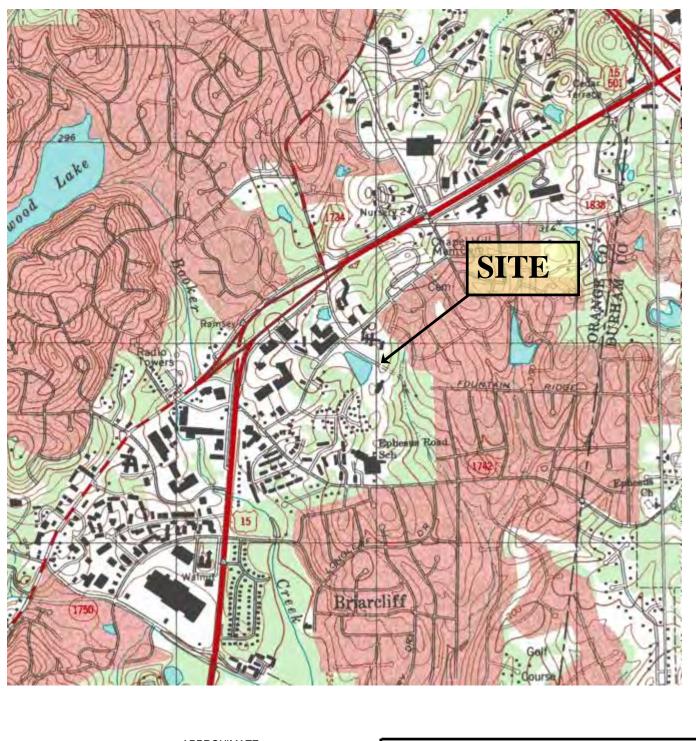
Table 2Summary of Groundwater Analytical DataTown of Chapel Hill - American LegionChapel Hill, North CarolinaH&H Job No. TCH-003

Location Sample ID	Suspected septic leach field (next to SB-4) TMW-1	NCAC 2L Groundwater
Sample Date	5/16/2017	Standard ⁽¹⁾
Units	μg/L	μg/L
<u>VOCs (602)</u>	ND	varies
EPH (MADEP EPH)	ND	varies
VPH (MADEP VPH)	ND	varies
<u>PAHs (625)</u>		
TIC: Unknown 1	25	

Notes:

1) North Carolina Administrative Code 15A 2L Groundwater Standard Sample results are only displayed for constituents detected above laboratory reporting limits **Bold** indicates concentration exceeds NCAC 15A 2L Groundwater Standard Method number follows parameter in parenthesis

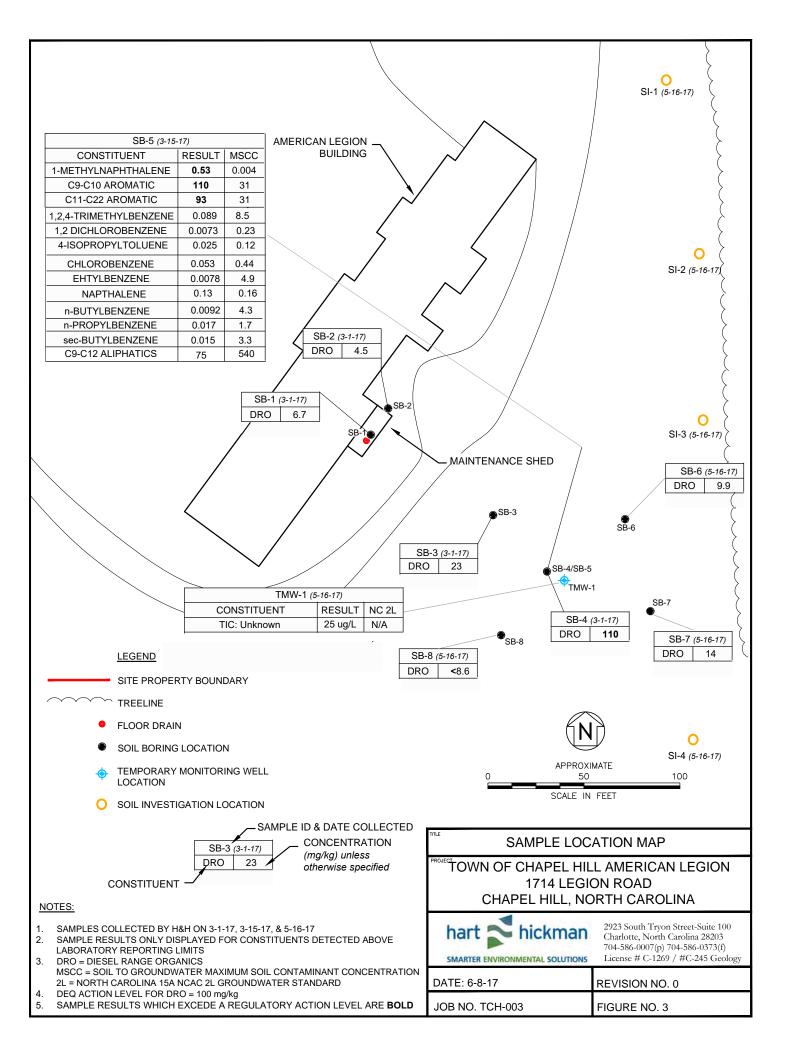
VOCs = volatile organic compounds; EPH = extractable petroleum hydrocarbons;

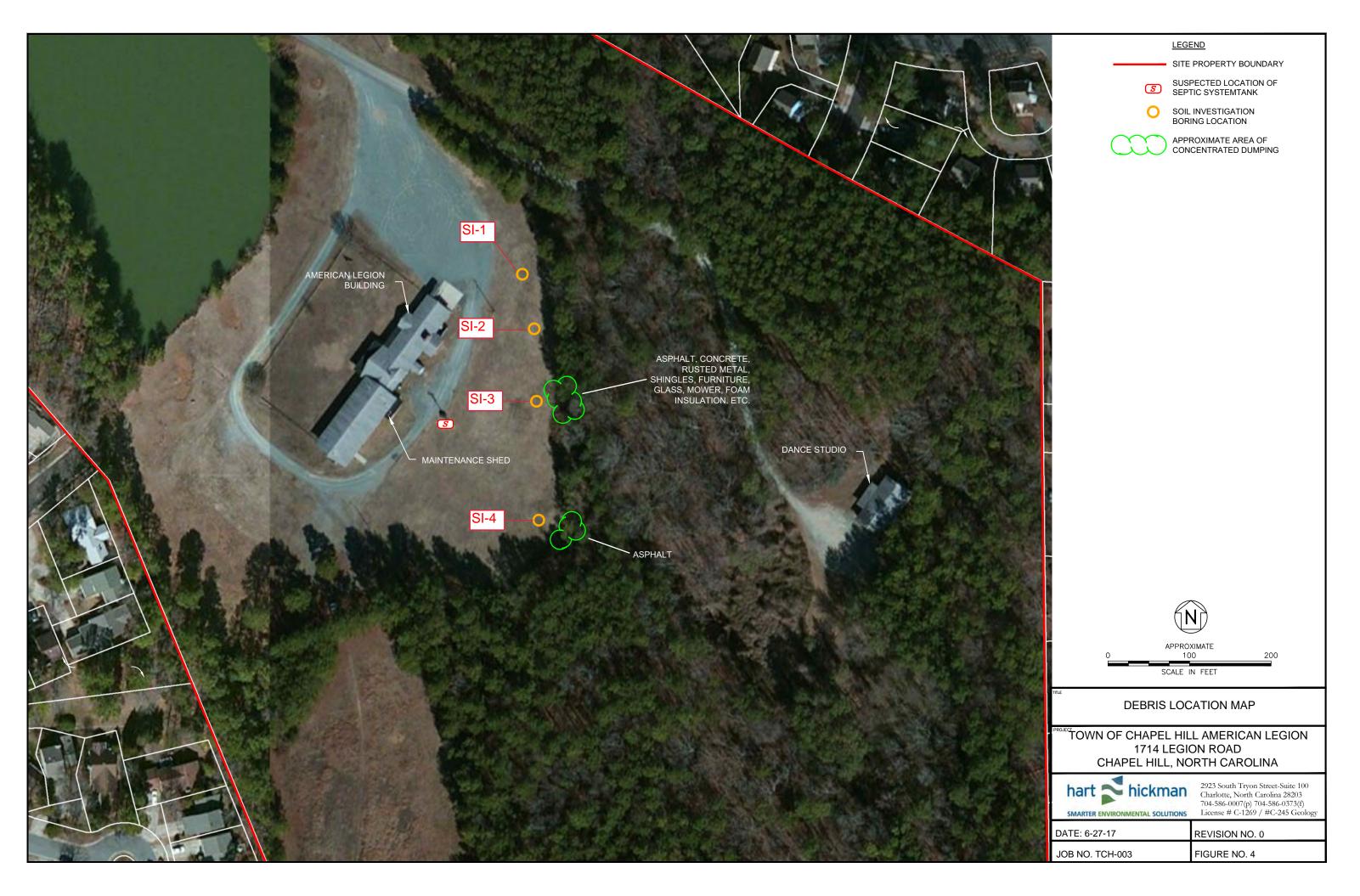

VPH = volatile petroleum hydrocarbons; PAH = polyaromatic hydrocarbons

TIC = tentively identified compound

NA = not analyzed; NS = not specified; ND = not detected, -- = not applicable or not available $\mu g/L$ = micrograms per liter

Figures




	0	APPROXIMATE 2000	4000	Т
		SCALE IN FEET		PF
L	J.S.G.S. QL	JADRANGLE MAP		
CHAP	EL HILL, N	IORTH CAROLINA	2002	-
	QUA	ADRANGLE		
7.5		RIES (TOPOGRAPHI	C)	Γ

TITLE	SITE LOC	ATION MAP								
PROJECT	PROJECT AMERICAN LEGION 1714 LEGION ROAD CHAPEL HILL, NORTH CAROLINA									
		Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f)								
DATE:	3-9-17	REVISION NO: 0								
JOB NO:	TCH-003	FIGURE: 1								

4		EGEND
		ITE PROPERTY BOUNDARY
		USPECTED LOCATION OF EPTIC SYSTEM
1		
1:2		
17		
>		
1		
04		
$ \rightarrow $		
SE .		
TOOL AT		
134		
1		
1 AN		<i>~</i>
	k	N
	APP 0	ROXIMATE 180 360
4		E IN FEET
	TITLE	
	SIT	E MAP
	PROJECT	
	TOWN OF CHAPEL F 1714 F(HILL AMERICAN LEGION GION ROAD
		NORTH CAROLINA
	hart history	2923 South Tryon Street-Suite 100
	hart 🏲 hickma	704-586-0007(p) 704-586-0373(f)
	SMARTER ENVIRONMENTAL SOLUTIO	
EXE.	DATE: 2-10-17	REVISION NO. 0
1 Partie	JOB NO. TCH-003	FIGURE NO. 2

Appendix A

Soil Boring Logs

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-1

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

7	04-586	6-0007(p) 704-586	5-0373(f)	9 1	919-847-4	241(p) 919-i	847-4261(f)	LOCATION: Chapel Hill, NC			
DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)			ГІТНОГОЄУ		MATERIAL DESCRIPTION		WELL DIAGRAM	DEPTH (#)
	REC	SAI		BKG.	SAMP.						
-0.0- - -							Dry, medium	, brown, CLAY			0.0
-		282 292		0	0.6						_
 2.5– 				0	1		Dry, medium	, brown, CLAY			_
-				0	0.4		Moist, mediu	m, brown, CLAY			
 				0	0.2		Moist, mediu	m, grey, CLAY			_
-5.0-					0.6			Bottom of borehole at 5.0 feet.			-5.0 - - -
	L RI	G CONTRAC	: Hand Au	ger	Probin	g	BORIN	IG STARTED: 3/1/17 IG COMPLETED: 3/1/17	Remari Soil sa	ks: mple collected from 1-2' interval	_
LOG	GED	NG METHOD BY: JAO BY: JAO	: Hand Au	ger			TOP O	L DEPTH: 5 ft. F CASING ELEV: H TO WATER:	bgs.		

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-2

Sheet 1 of 1

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

H H <th></th> <th>1</th> <th></th> <th>5-0007(p) 704-586-</th> <th>-007 0(1)</th> <th></th> <th>13-047-4</th> <th></th> <th>201(I)</th> <th>LOCATION: Chapel Hill, NC</th> <th></th> <th></th> <th></th>		1		5-0007(p) 704-586-	-007 0(1)		13-047-4		201(I)	LOCATION: Chapel Hill, NC			
Image: Sign of the second se		UEPTH (ft)	ECOVERY (%)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)			ГІТНОГОВУ		MATERIAL DESCRIPTION		WELL DIAGRAM	DEPTH (ft)
0 0.3 Dry, medium, brown, CLAY - 0 0.3 Dry, medium, greyish brown, CLAY - 2.5 0 0.4 Moist, medium, greyish brown, CLAY - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - 0 0.4 Moist, medium, greyish brown, CLAY - - <t< td=""><td></td><td>0.0-</td><td>Ľ.</td><td>0,</td><td></td><td>BK(</td><td>SAN</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0.0-	Ľ.	0,		BK(SAN						
1 0 0.3 Dry, medium, greyish brown, CLAY 2.5 0.0 0.4 Moist, medium, greyish brown, CLAY 5.0 0	Γ	-0.0-							Dry, medium	i, orangish brown, CLAY			
2.5 1 0 0.4 Moist, medium, greyish brown, CLAY -2.5 - - 0 0.4 Moist, medium, greyish brown, CLAY - - - 0 0.4 Moist, medium, greyish brown, CLAY - - - - - - - - - 0 0.4 Moist, medium, greyish brown, CLAY - - - - - - - - - - 0 0.4 Moist, medium, greyish brown, CLAY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -						0	0.3		Dry, medium	i, brown, CLAY			
2.5 1 0 0.4 Moist, medium, greyish brown, CLAY -2.5 - - 0 0.4 Moist, medium, greyish brown, CLAY - - - 0 0.4 Moist, medium, greyish brown, CLAY - - - - - - - - - 0 0.4 Moist, medium, greyish brown, CLAY - - - - - - - - - - 0 0.4 Moist, medium, greyish brown, CLAY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		_											-
Image: Contractor: Regional Probing DRILL Rig/METHOD: Boring STARTED: 3/1/17 BORING STARTED: 3/1/17 BORING COMPLETED: Soil sample collected from 2-3' interval bgs.		_				0	0.3		Dry, medium	ı, greyish brown, CLAY			-
Image: Contractor: Regional Probing DRILL Rig/METHOD: Boring STARTED: 3/1/17 BORING STARTED: 3/1/17 BORING COMPLETED: Soil sample collected from 2-3' interval bgs.		_											\vdash
Image: State of the state		2.5–		E.S.									-2.5
Image: State of the state		_											
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:		_				0	0.4		Moist, mediu	ım, greyish brown, CLAY			
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:		_											
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:													
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	GPJ					0	0.4						
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	CH-003	_					0.4						
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	CTS/TC	_											
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	ROJEC	_											
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	SINT PI	·5.0—					0.3			Dattam of barabala at 5.0 fact			-5.0-
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	STER O	_								Bollom of borehole at 5.0 leel.			-
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	B MAS	_											-
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	- S:\BE	_											-
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	10:01	_											\vdash
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	/16/17	_											-
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	DT - 3	_											\vdash
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	MAN.G	_											\vdash
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	T HICK					ions! "			BOBI		Derre	ko	<u> </u>
SAMPLING METHOD: Hand Auger TOTAL DEPTH: 5 ft. bgs. LOGGED BY: JAO TOP OF CASING ELEV:	- HAR	DRIL	L RI	G/ METHOD	: Hand Au	ger	מוסטי	y	BORIN	IG COMPLETED: 3/1/17			
DRAWN BY: JAO DEPTH TO WATER:	LOG				: Hand Au	ger					bgs.		
	WELL												

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-3

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill. NC

(ff)	RECOVERY (%)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)			КЭОТОНТІ	MATERIAL DESCRIPTION	WELL DIAGRAM	
	RECC	SAMF	"OZ	BKG.	SAMP.				
0.0 - 							Dry, orangish brown, CLAY		
_				0	1.3				
2.5-				0	0.8				
				0	1.1				
_		.000		0	2.5				
.0-				0	2.6				
-				0	1.5				
_				0	0.9		Dry, brown, clayey SILT	_	
.5-				0	1.6				
_				0	2.8		Dry, dark red, CLAY		
).0-				0	2.9				
-				0	2.3				
-				0	2.8				
2.5- - - - -							Refusal at 12.0 feet. Bottom of borehole at 12.0 feet.		
rili Amf	l Ri Plin	G CONTRAC G/ METHOE IG METHOE BY: JAO	: Geoprob	e 5410) / DP			marks: il sample collected from 4-5' interval s.	

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f)

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-4

PROJECT: American Legion JOB NUMBER: TCH-003

LOCATION: Chapel Hill, NC

DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)			ГІТНОГОЄУ	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH
-0.0-	RE	S/		BKG.	SAMP.				-0.0
0.0	-			0	1.9		ry, medium, brown, silty CLAY		
- - 2 5-	-			0	2.1		ry, medium, orangish brown, CLAY	_	-
				0	2.6				
	•			0	2.8				
				0	1.2		ry, medium, dark reddish brown, CLAY		5.
5.0	-			0	4.6				
7.5_	-			0	13.1				7.
-	-			0	28.8		loist, medium, dark brown, CLAY		
 10.0-	-			0	13.3				-10
-		mr.		0	40.1				
	-			0	7.5		ry, firm, orangish brown, CLAY	_	
12.5- 				0	6.6		,,,,,,		-12
-				0	6.3		Refusal at 14.0 feet. Bottom of borehole at 14.0 feet.	_	
15.0- 									-15
DRIL SAM LOG	l Ri Plin Ged	G CONTRAC G/ METHOD: IG METHOD: BY: JAO BY: JAO	Geoprob	e 5410) / DP		BORING STARTED: 3/1/17 Remains a second seco	arks: sample collected from 10-11' al bgs.	

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-5

PROJECT: American Legion JOB NUMBER: TCH-003

2.5-		0	1.3 5.6	Dry, medium, orangish brown, CLAY	2.:
5.0-		0	2.3 7.8 14.3	Dry, medium, dark reddish brown, CLAY	
7.5-		0	45.9	Moist, medium, dark brown, CLAY	 7.
	m	0	17.3 18.5	Moist, medium, greyish brown, CLAY Bottom of borehole at 11.0 feet.	-10

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-6

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

	704-58	86-0007(p) 704-586	-0373(f)		919-8	47-4241(p) 919-847-4261(f)	LOCATION: Chapel Hill, NC			
DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	BKG.	SAMP.	ГІТНОГОСУ	MA	TERIAL DESCRIPTION		BORING DIAGRAM	DEPTH (ft)
-0.0			풢	SAI		Dry, medium, light brow	vn SII T			-0.0-
-	_		0.0	7.3		Moist, medium, light bro				
-			0.0	7.5		Moist, medium, light bro	own, clayey SILT w/ mica			
2.5			0.0	7.4						-2.5
-	-					Moist, medium, brown,	SILT W/ mica			-
-			0.0	7.7		Moist, medium, brown,	SILT w/ mica			
5.0-			0.0	4.9		Moist, medium, brownis	sh orange, sandy SILT w/ mica			-5.0 -
-	-	ew?				- - -				
-			0.0	8.2		Moist, medium, brown,	SILT w/ gravel			
7.5- - 										-7.5
ER GINT PROJECTS/TCH-003.GPJ			0.0	7.2						
	-					Moist, medium, brown,	SILT w/ gravel			
10.0 BR)- - -									-10.0
MASTER			0.0	6.1		Moist, stiff, purplish bro	wn, SILT			
۲.12.5 12.5	2		0.0	4.4			DPT refusal at 13.0 feet.			-12.5
T - 6/23/	-					Во	ttom of borehole at 13.0 feet.			
AMAN.GC										
한 표 5 15.0										-15.0
DRI		NG CONTRA			antex, In		NG STARTED: 5/16/17 NG COMPLETED: 5/16/17	Remarks		
ଁ ଅଧି	/IPLII GGE[NG METHOD D BY: TCW BY: JAO			Sleeves	ТОТА ТОР (L DEPTH: 13 ft. DF CASING ELEV:	Soil san bgs.	pple collected from 5-7' interval	
						DEPT	H TO WATER:			

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-7

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

	704-5	86-0007(p) 704-5	00-0373(1)		919-0	47-4241(p) 919-847-4261(f) LOCATION: Chapel Hill, NC		
DEPTH	RECOVERY (%)	SAMPLE TYPE NUMBER			ГІТНОГОСУ	MATERIAL DESCRIPTION BO	RING DIAGRAM	DEPTH (ft)
		SA	BKG.	SAMP.				-0.0-
-0.0	, 		0.0	4.3		Moist, medium, orangish brown, silty CLAY Dry, medium, light brown, SILT		0.0
	-		0.0	6.1		Slighty moist, medium, orangish brown, silty CLAY		
2.5	5- 		0.0	5.5		Slighty moist, medium, grey, SILT w/ mica and slight odor		-2.5
	-		0.0	4.1		Slighty moist, medium, grey w/ orange mottles, sandy SILT w/ slight		_ _ _
5.0	 		0.0	6.4		odor		 5.0
						Wet, medium, greyish brown, SILT w/ asphalt chunks and smell of waste		
	_							
7.5								 7.5
GPJ	-							_ _ _
TCH-003	_							
10.	0-		0.0	3.4		Wet, medium, reddish brown, SILT w/ mica		-10.0
R GINT PI		ew?					-	_ _ _
BB MASTE 12.			0.0	6.2				 -12.5
:13 - S:\BE			0.0	0.2		Wet, very stiff, reddish brown, SILT		
3/23/17 16								
9-100.NV	0-		0.0	3.2		DPT refusal at 14.5 feet. Bottom of borehole at 14.5 feet.		 -15.0
T HICKM	-							
- DR SA SA	ILL F MPLI GGE	NG CONTRA RIG/ METHO Ing Metho D By: TCW I By: Jao)D: HA D: HA/	/DPT			cted from 10-12.5'	

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-8

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

	704-50	586-0007(p) 704-586	5-0373(1)		919-0	47-4241(p) 919-847-4261(f) LOCATION: Chapel Hill, NC		
DEPTH (#)	RECOVERY (%)	SAMPLE TYPE NUMBER			гітногоду	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
-0.0		SA	BKG.	SAMP.				-0.0-
			0.0	10.4		Dry, medium, orangeish brown, silty CLAY Dry, medium, light brown, SILT		
2.5			0.0	10.2		Dry, medium, orangish brown, SILT w/ maganese nodules, asphalt, and slight odor	,	 -2.5
			0.0	23.5		Moist, medium, brown, SILT w/ mica		
		000	0.0	8.6		Moist, medium, brown, SILT w/ mica and some gravel		
5.0			0.0	6.7		Dry, medium, brownish orange, SILT w/ asphalt		-5.0
7.5			0.0	2.6		Moist, medium, greyish brown, SILT w/ mica		 7.5
ER GINT PROJECTS/TCH-003.GPJ			0.0	1.1		Moist, medium, reddish brown, SILT w/ mica		 _10.0
			0.0	0.8		Dry, very stiff, reddish brown, SILT		
2 16:13 - S:\BBB	>- - - -		0.0	0.6		DPT refusal at 13.5 feet.		-12.5
BOKING FOG- HAKI HICKMAN GDI - 6/23/17 16:13 - S:/BBB MASI DR DL DC DC - 102 -						Bottom of borehole at 13.5 feet.		-15.0
	DRILLING CONTRACTOR: Quantex, Inc. DRILL RIG/ METHOD: HA/DPT SAMPLING METHOD: HA/ DPT Sleeves LOGGED BY: TCW/LSM DRAWN BY: JAO					PODING COMPLETED: 5/16/17	marks: I sample collected from 4-6' interval S.	

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SI-1

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

		-0007(p) 704-586-(5575(1)		919-0	47-4241(p) 919-847-4261(f) LOCATION: Chapel Hill, NC		
DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	(UMA (DDM)		ГІТНОГОСУ	MATERIAL DESCRIPTION		(ft)
-0.0-		SAI	BKG.	SAMP.				0.0-
-						Dry, medium, light brown, SILT		
-			0.0	0		Moist, medium, light brown, clayey SILT		
- - 2.5-			0.0	0		Moist, medium, light brown, clayey SILT w/ mica		2.5
2.5			0.0	0		Moist, medium, brown, SILT w/ mica		
-			0.0	0		Moist, medium, brown, SILT w/ mica		
- 5.0-			0.0	0		Moist, medium, brownish orange, sandy SILT w/ mica	=	5.0
-								
-			0.0	0				
7.5-			0.0			Moist, medium, brown, SILT w/ gravel	-7	7.5
H-003.GP.								
			0.0	0		Moist, medium, brown, SILT w/ gravel		
ER GINT PROJECTS/TCH-003.GPJ							-11	0.0
MASTER			0.0	0		Moist, stiff, purplish brown, SILT		
3 - S:\BBB								
12.5 ⁻			0.0	0	\downarrow	DPT refusal at 13.0 feet.		2.5
I.GDT - 6/2						Bottom of borehole at 13.0 feet.		
– – – – – – – – – – –								5.0
DRII	LLING	G CONTRAC			antex, In		Remarks:	
ଁ SAN ଅଧି LOG	IPLIN GED	G/ METHOD G METHOD: BY: TCW/L: BY: JAO		DPT		BORING COMPLETED: 5/16/17 TOTAL DEPTH: 13 ft. TOP OF CASING ELEV: DEPTH TO WATER:		

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SI-2

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

	704-58	6-0007(p) 704-586-0	J373(T)		919-8	47-4241(p) 919-847-4261(f) LOCATION: Chapel Hill, NC		
DEPTH (ft)	RECOVERY (%) SAMPLE TYPE NUMBER		OVA (nnm)		ГІТНОГОĠY	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
-0.0		Ś	BKG.	SAMP.				0.0
0.0						Dry, medium, light brown, SILT		
			0.0	0		Moist, medium, light brown, clayey SILT		
2.5	-		0.0	0		Moist, medium, light brown, clayey SILT w/ mica		
			0.0	0		Moist, medium, brown, SILT w/ mica		
			0.0	0		Moist, medium, brown, SILT w/ mica		
5.0			0.0	0		Moist, medium, brownish orange, sandy SILT w/ mica		5.0
7.5 7.5			0.0	0		Moist, medium, brown, SILT w/ gravel		 7.5
ER GINT PROJECTS/TCH-003.GPJ)-		0.0	0		Moist, medium, brown, SILT w/ gravel		-10.0
13 - S:\BBB MASTER GIN			0.0	0		Moist, stiff, purplish brown, SILT		- - - - - - - - - - - - - - - - - - -
3/23/17 16:			0.0			DPT refusal at 13.0 feet. Bottom of borehole at 13.0 feet.		
BORING LOG - HART HICKMAN.GDT - 6/23/17 16:13 - S. IBBB MAST 2015 12 12 12 2016 12 12								-15.0
		G CONTRAC			intex, Ind	BORING STARTED: 5/16/17 BORING COMPLETED: 5/16/17	Remarks:	
SAN LOC DR/	MPLIN GGED	NG METHOD: D BY: TCW/LS BY: JAO				TOTAL DEPTH: 13 ft. TOP OF CASING ELEV: DEPTH TO WATER:		

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f)

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SI-3

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

	04-586	-0007(p) 704-586-0	J373(t)		919-	Jarr-4241(p) 919-847-4261(f) LOCATION: Chapel Hill, NC	
DEPTH (ft)	RECOVERY (%)	SAMPLE TYPE NUMBER	G. OVA (nnm)		ГІТНОГОĞY	MATERIAL DESCRIPTION BORING DIAGRAM	DEPTH (ft)
	œ	07	BKG.	SAMP.			0
			0.0 0.0 0.0	0 0 0		Dry, medium, light brown, SILT Moist, medium, light brown, clayey SILT Moist, medium, light brown, clayey SILT w/ mica Moist, medium, brown, SILT w/ mica	
			0.0	0		Moist, medium, brown, SILT w/ mica	_
5 — — —			0.0	0		Moist, medium, brownish orange, sandy SILT w/ mica	- 5
			0.0	0		Moist, medium, brown, SILT w/ gravel	
			0.0	0		Moist, medium, brown, SILT w/ gravel	_ _ _10
			0.0	0		Moist, stiff, purplish brown, SILT	
			0.0	0			
15 15			0.0	0			15
			0.0	0			F
						DPT refusal at 18.0 feet. Bottom of borehole at 18.0 feet.	
	.L RI PLIN GED	G CONTRAC G/ METHOD G METHOD: BY: TCW/L BY: JAO	: HA/		I intex, Ir	c. BORING STARTED: 5/16/17 Remarks: BORING COMPLETED: 5/16/17 TOTAL DEPTH: 18 ft. TOP OF CASING ELEV: DEPTH TO WATER:	20

SMARTER ENVIRONMENTAL SOLUTIONS

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) 3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SI-4

PROJECT: American Legion JOB NUMBER: TCH-003 LOCATION: Chapel Hill, NC

DEPTH (ft) =COVEDV (%)	SAMPLE TYPE NUMBER			ГІТНОГОĠY	MATERIAL DESCRIPTION	
	R S	BKG.	SAMP.			
5		0.0 0.0 0.0 0.0	0 0 0 0 0		Moist, medium, orangish brown, silty CLAY Dry, medium, light brown, SILT Slighty moist, medium, orangish brown, silty CLAY Slighty moist, medium, grey, SILT w/ mica, ashphalt chunks, an slight odor Slighty moist, medium, grey w/ orange mottles, sandy SILT w/ s odor Wet, medium, greyish brown, SILT w/ asphalt chunks and smell waste	light
- - - 10- - -		0.0	0		Wet, medium, reddish brown, SILT w/ mica and asphalt chunks	
_		0.0	0		Wet, very stiff, reddish brown, SILT w/ asphalt chunks	
_ _ 15— _		0.0	0			
_		0.0	0			
-					DPT refusal at 17.0 feet. Bottom of borehole at 17.0 feet.	
drill Sampi Loggi	LING CONTRA RIG/ METHO LING METHO ED BY: TCW /N BY: JAO	DD: HA		l antex, Ind	C. BORING STARTED: 5/16/17 BORING COMPLETED: 5/16/17 TOTAL DEPTH: 17 ft. TOP OF CASING ELEV: DEPTH TO WATER:	Remarks:

SMARTER ENVIRONMENTAL SOLUTIONS

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704 596 0007(n) 704 596 0272(f)

3334 Hillsborough Street Raleigh, North Carolina 27607 010 947 4241(n) 010 947 4261(f)

BORING NUMBER TMW-1

PROJECT: American Legion JOB NUMBER: TCH-003

	RECOVERY (%)	SAMPLE TYPE NUMBER	(mnn) Δ//Ο		гітногоду	MATERIAL D	ESCRIPTION	BORING DIAGRAM
	REC	SAN	BKG.	SAMP.				
-0			0.0 0.0 0.0	2.1 2.4 8.5		Dry, medium, brown, SILT w/ gra	vel and asphalt.	
			0.0	3.1		Dry, very stiff, light purple, sandy	SILT.	
10			0.0	3				
			0.0	2.8				
15			0.0	1.4		Saporlite - Dry, very stiff, purplish DPT refusal at 13 ft bgs, converte	brown, SILT w/ mica. ed to Air Rotary.	1" Dia Sch. 40 Riser
25						Saporlite - Moist, very stiff, purplis	sh brown, SILT w/ mica.	 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
35						Saporlite - Wet, very stiff, purplisl	n brown, SILT w/ mica.	1" Dia Sch. 40 PVE 0.010" Slot Screen
40			0.0				y refusal at 39.0 feet. borehole at 39.0 feet.	
drill Sampi Logg	- RI PLIN GED	G CONTRAG G/ METHOE G METHOD BY: TCW/L BY: JAO): DP [.] : HA/	T & Ai	r Rotary		LETED: 5/16/17 39 ft. 3 ELEV:	Remarks: Groundwater sample collected for analysis of VOCs, SVOCs, EPH, VPH.

Appendix B

Laboratory Analytical Data Report

March 8, 2017

Jeffrey Ollison Hart & Hickman - Raleigh, NC 3334 Hillsborough Street Raleigh, NC 27607

Project Location: Chapel Hill, NC Client Job Number: Project Number: TCH.003 Laboratory Work Order Number: 17C0088

Enclosed are results of analyses for samples received by the laboratory on March 1, 2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

n Mere

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
17C0088-01	5
17C0088-02	7
17C0088-03	9
17C0088-04	11
Sample Preparation Information	13
QC Data	14
Petroleum Hydrocarbons Analyses	14
B171709	14
B171736	14
Flag/Qualifier Summary	15
Certifications	16
Chain of Custody/Sample Receipt	17

Hart & Hickman - Raleigh, NC 3334 Hillsborough Street Raleigh, NC 27607 ATTN: Jeffrey Ollison

REPORT DATE: 3/8/2017

PURCHASE ORDER NUMBER:

PROJECT NUMBER: TCH.003

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 17C0088

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Chapel Hill, NC

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
SB-1 (1-2)	17C0088-01	Soil		SM 2540G	
				SW-846 8015C	
SB-2 (1-2)	17C0088-02	Soil		SM 2540G	
				SW-846 8015C	
SB-3 (4-5)	17C0088-03	Soil		SM 2540G	
				SW-846 8015C	
SB-4 (10-11)	17C0088-04	Soil		SM 2540G	
				SW-846 8015C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8015C

Qualifications:

S-25

Surrogate recovery is outside of control limits due to suspected matrix interference. Samples of a clay-like matrix historically have exhibited low surrogate recovery. Analyte & Samples(s) Qualified:

o-Terphenyl

17C0088-01[SB-1 (1-2)]

SW-846 8015C

Gasoline Range Organics (2-Methylpentane through 1,2,4-Trimethylbenzene) is quantitated against a calibration made with an unleaded gasoline composite standard. Diesel Range Organics (C10-C28) is quantitated against a calibration made with a #2 fuel oil standard.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Project Manager

Table of Contents

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Chapel Hill, NC Work Order: 17C0088 Sample Description: Date Received: 3/1/2017 Sampled: 3/1/2017 09:10 Field Sample #: SB-1 (1-2) Sample ID: 17C0088-01 Sample Matrix: Soil Petroleum Hydrocarbons Analyses Date Date/Time Analyte Results RL DL Units Dilution Flag/Qual Method Prepared Analyzed Analyst Gasoline Range Organics (GRO) ND 1.0 mg/Kg dry SW-846 8015C EEH 1 3/3/17 3/6/17 11:47

		110		•		511 010 00120	5/5/1/	5/0/1/ 11:1/	LLII
Diesel Range Organics	6.7	10 2.	2 mg/Kg dry	1	J	SW-846 8015C	3/3/17	3/6/17 17:16	SCS
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1-Chloro-3-fluorobenzene		91.3	70-130					3/6/17 11:47	
o-Terphenyl		37.9 *	40-140		S-25			3/6/17 17:16	

	39 Spruce S	treet * East L	ongmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Chapel Hill, NC	Sa	mple Descripti	on:				Work Orde	er: 17C0088	
Date Received: 3/1/2017									
Field Sample #: SB-1 (1-2)	Sa	mpled: 3/1/20	17 09:10						
Sample ID: 17C0088-01									
Sample Matrix: Soil									
	Conv	entional Chen	nistry Parameters by	y EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	83.6		% Wt	1		SM 2540G	3/3/17	3/6/17 7:31	MRL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Chapel Hill, NC Work Order: 17C0088 Sample Description: Date Received: 3/1/2017 Sampled: 3/1/2017 10:55 Field Sample #: SB-2 (1-2) Sample ID: 17C0088-02 Sample Matrix: Soil Petroleum Hydrocarbons Analyses Date Date/Time Analyte Results RL DL Units Dilution Flag/Qual Method Prepared Analyzed Analyst Gasoline Range Organics (GRO) ND 0.85 SW-846 8015C EEH mg/Kg dry 1 3/3/17 3/6/17 12:23

Diesel Range Organics	4.5	9.4	2.1	mg/Kg dry	1	J	SW-846 8015C	3/3/17	3/6/17 17:34	SCS
Surrogates		% Recove	ry	Recovery Limits		Flag/Qual				
1-Chloro-3-fluorobenzene		86.8		70-130					3/6/17 12:23	
o-Terphenyl		46.6		40-140					3/6/17 17:34	

	39 Spruce S	treet * East	Longmeadow, MA 0'	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Chapel Hill, NC	Sa	mple Descrip	tion:				Work Orde	er: 17C0088	
Date Received: 3/1/2017									
Field Sample #: SB-2 (1-2)	Sa	mpled: 3/1/2	017 10:55						
Sample ID: 17C0088-02									
Sample Matrix: Soil									
	Conv	entional Che	mistry Parameters by	EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	88.9		% Wt	1		SM 2540G	3/3/17	3/6/17 7:31	MRL

	39 Spruce S	treet * Ea	ast Longr	eadow, MA 0'	028 * FAX 4	13/525-6405 * TE	EL. 413/525-2332				
Project Location: Chapel Hill, NC	Sa	mple Des	cription:					Work Orde	r: 17C0088		
Date Received: 3/1/2017											
Field Sample #: SB-3 (4-5) Sampled: 3/1/2017 11:40											
Sample ID: 17C0088-03											
Sample Matrix: Soil											
			Pet	roleum Hydroc	arbons Analy	/ses					
								Date	Date/Time		
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Gasoline Range Organics (GRO)	ND	1.2		mg/Kg dry	1		SW-846 8015C	3/3/17	3/6/17 12:59	EEH	

Diesel Range Organics	23	10	2.3	mg/Kg dry	1		SW-846 8015C	3/3/17	3/6/17 17:51	SCS
Surrogates		% Recov	/ery	Recovery Limits		Flag/Qual				
1-Chloro-3-fluorobenzene		87.5		70-130					3/6/17 12:59	
o-Terphenyl		47.7		40-140					3/6/17 17:51	

	39 Spruce S	treet * East I	Longmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Chapel Hill, NC	Sa	mple Descript	tion:				Work Orde	er: 17C0088	
Date Received: 3/1/2017									
Field Sample #: SB-3 (4-5)	Sa	mpled: 3/1/2	017 11:40						
Sample ID: 17C0088-03									
Sample Matrix: Soil									
	Conv	entional Che	mistry Parameters by	EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	81.1		% Wt	1		SM 2540G	3/3/17	3/6/17 7:31	MRL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Project Location: Chapel Hill, NC Work Order: 17C0088 Sample Description: Date Received: 3/1/2017 Sampled: 3/1/2017 12:22 Field Sample #: SB-4 (10-11) Sample ID: 17C0088-04 Sample Matrix: Soil Petroleum Hydrocarbons Analyses Date Date/Time Analyte Results RL DL Units Dilution Flag/Qual Method Prepared Analyzed Analyst Gasoline Range Organics (GRO) ND 1.2 SW-846 8015C EEH mg/Kg dry 1 3/3/17 3/6/17 13:35

Diesel Range Organics	110	10 2.3	mg/Kg dry	1		SW-846 8015C	3/3/17	3/6/17 18:09	SCS
Surrogates		% Recovery	Recovery Limits	F	lag/Qual				
1-Chloro-3-fluorobenzene		89.1	70-130					3/6/17 13:35	
o-Terphenyl		50.6	40-140					3/6/17 18:09	

	39 Spruce S	treet * East L	ongmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Chapel Hill, NC	Sa	mple Descript	ion:				Work Orde	er: 17C0088	
Date Received: 3/1/2017									
Field Sample #: SB-4 (10-11)	Sa	mpled: 3/1/20	017 12:22						
Sample ID: 17C0088-04									
Sample Matrix: Soil									
	Conv	entional Cher	nistry Parameters by	EPA/APHA/	'SW-846 Methods ('	Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	80.2		% Wt	1		SM 2540G	3/3/17	3/6/17 7:31	MRL

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
17C0088-01 [SB-1 (1-2)]	B171723	03/03/17
17C0088-02 [SB-2 (1-2)]	B171723	03/03/17
17C0088-03 [SB-3 (4-5)]	B171723	03/03/17
17C0088-04 [SB-4 (10-11)]	B171723	03/03/17

Prep Method: SW-846 3546-SW-846 8015C

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
17C0088-01 [SB-1 (1-2)]	B171709	30.0	1.00	03/03/17
17C0088-02 [SB-2 (1-2)]	B171709	30.0	1.00	03/03/17
17C0088-03 [SB-3 (4-5)]	B171709	30.0	1.00	03/03/17
17C0088-04 [SB-4 (10-11)]	B171709	30.0	1.00	03/03/17

Prep Method: SW-846 5035/5030B-SW-846 8015C

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
17C0088-01 [SB-1 (1-2)]	B171736	7.10	6.20	03/03/17
17C0088-02 [SB-2 (1-2)]	B171736	7.80	5.90	03/03/17
17C0088-03 [SB-3 (4-5)]	B171736	6.70	6.30	03/03/17
17C0088-04 [SB-4 (10-11)]	B171736	6.70	6.30	03/03/17

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B171709 - SW-846 3546										
Blank (B171709-BLK1)				Prepared: 03	3/03/17 Anal	yzed: 03/06/	17			
Diesel Range Organics	ND	8.3	mg/Kg wet							
Surrogate: o-Terphenyl	2.78		mg/Kg wet	3.33		83.5	40-140			
LCS (B171709-BS1)				Prepared: 03	3/03/17 Anal	yzed: 03/06/	17			
Diesel Range Organics	26.0	8.3	mg/Kg wet	33.3		78.0	40-140			
Surrogate: o-Terphenyl	2.82		mg/Kg wet	3.33		84.5	40-140			
LCS Dup (B171709-BSD1)				Prepared: 03	3/03/17 Anal	yzed: 03/06/	17			
Diesel Range Organics	25.7	8.3	mg/Kg wet	33.3		77.1	40-140	1.22		
Surrogate: o-Terphenyl	2.75		mg/Kg wet	3.33		82.5	40-140			
Batch B171736 - SW-846 5035/5030B										
Blank (B171736-BLK1)				Prepared: 03	3/03/17 Anal	yzed: 03/06/	17			
Gasoline Range Organics (GRO)	ND	1.0	mg/Kg wet							
Surrogate: 1-Chloro-3-fluorobenzene	0.0134		mg/Kg wet	0.0150		89.5	70-130			
LCS (B171736-BS1)				Prepared: 03	3/03/17 Anal	yzed: 03/06/	17			
Gasoline Range Organics (GRO)	0.229	0.010	mg/Kg wet	0.250		91.6	80-120			
Surrogate: 1-Chloro-3-fluorobenzene	0.0140		mg/Kg wet	0.0150		93.5	70-130			
LCS Dup (B171736-BSD1)				Prepared: 03	3/03/17 Anal	yzed: 03/06/	17			
Gasoline Range Organics (GRO)	0.256	0.010	mg/Kg wet	0.250		102	80-120	11.1	30	
Surrogate: 1-Chloro-3-fluorobenzene	0.0134		mg/Kg wet	0.0150		89.5	70-130			

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
 † Wide recovery limits established for difficult compound.
 ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
- ND Not Detected
- RL Reporting Limit
- DL Method Detection Limit
- MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
- S-25 Surrogate recovery is outside of control limits due to suspected matrix interference. Samples of a clay-like matrix historically have exhibited low surrogate recovery.

CERTIFICATIONS

Certified Analyses included in this Report

NH-P

New Hampshire Environmental Lab

Analyte		Certifications		
W-846 8015C	in Soil			
Gasoline Rang	ge Organics (GRO)	NY,VA,NH,NC		
Diesel Range	Organics	NY,VA,NH,NC		
The CON-TE	ST Environmental Laboratory operates u	nder the following certifications	and accreditations:	
Code	Description		Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2	005	100033	02/1/2018
MA	Massachusetts DEP		M-MA100	06/30/2017
СТ	Connecticut Department of Pub	ilc Health	PH-0567	09/30/2017
NY	New York State Department of	Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental	Lab	2516 NELAP	02/5/2018
RI	Rhode Island Department of He	alth	LAO00112	12/30/2017
NC	North Carolina Div. of Water Q	uality	652	12/31/2017
NJ	New Jersey DEP		MA007 NELAP	06/30/2017
FL	Florida Department of Health		E871027 NELAP	06/30/2017
VT	Vermont Department of Health	Lead Laboratory	LL015036	07/30/2017
ME	State of Maine		2011028	06/9/2017
VA	Commonwealth of Virginia		460217	12/14/2017

2557 NELAP

09/6/2017

A 01028 Page 1 of 1	# of Containers	** Preservation	***Container Code	Dissolved Metals	O Field Filtered	O Lab to Filter	***Cont. Code:	A≐amber glass G≅glass	P=plastic ST=sterile	V= vial S=cumma can	T=tedlar bag	0=Other	**Preservation	I = Iced H = HCI	M = Methanol	N = NITUE ACIO S = Sulfuric Acid	B = Sodium bisulfate X = Na hydroxide	T = Na thiosulfate	*Matrix Code: GW= proundwater	WW= wastewater	mple may be high UW = uninking water A = air c = controlid		u = other		Orphaned Landfill O REC		NELAC & AIHA Certified WBE/DBE Certified	PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT
39 Spruce Street East Longmeadow, MA 01028				Analysis Requested		·····															Please use the following codes to let Con-Test know if a specific sample may be high in concentration in Matrix/Conc. Code Box:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	Program Information)	O DSCA O IHSB Orphaned Landfill O SWS Landfill O UST O REC	O Other:	A AIHA	
Y RECORD	3	12 12	47 42				D	2-5) - 1	H0 40	-	х Х	$\frac{\lambda}{\lambda}$	$\frac{1}{2}$	$\frac{1}{2}$						e the following codes in concen	H - High; M - Mt	<u>quirements</u>					YOUR CHAIN.
CHAIN OF CUSTODY RECORD			1424-648-614	ТС И. 003		DATA DELIVERY (check all that apply)		JOIL'Son @ harthickman.com	Gentre Gexcel Ogis	O "Enhanced Data Package"	Composite Grab Code	X	א ג	ς λ	5 7						Please us		Detection Limit Reguirements	North Carolina	O 21 O GWPC	O SWSL O OTHER		SS THERE ARE QUESTIONS ON)
\ ~~	-	estlabs.com	felephone:	Project #	Client PO#	DATA DELIVERY (ch	Fax #		نټ	Collection	Beginning Ending Date/Time Date/Time	3-1-17	3-1-17	3-1-17	3-1-12								Turnaround ⁺⁺	O 5-Day	🗨 5-7-Day O 10-Day	<u>в USH</u> О ['] 24-Hr r ¹ 48-Hr	0 [†] 72-Hr r [†] 4-Day * Recuires Lah Amproval	FTER SAMPLE RECEIPT UNLE
Phone: 413-525-2332	Email: info@contestlabs.com	ANALYTICAL LABORATORY http://www.contestlabs.com	4 & Hickman	Hills boravan St	27607	Ollism Ollism	Bel Hill, NC	v Ollizon	:d? (for billing purposes)	proposal date	Client Sample ID / Description	SB-1(1-2)	56-2(1-2)	58-3 (14-9)	5 B-4(10-11)								Date/Time:	E 3/1/7 14/3	Why Date/Time: 1418	L Daté/Time: 1733	24°C Date/Time:	
			Company Name: Hart & Hickman	Address: 3334 Hills			Project Location: Chade	0,]	6	say O			6	C	//	T.					Comments:		Relinguisted by: (signature)		Received by: (signature)	Rethoduished by: (signature)	Received by: (signature)	TURNAROUND TIME (busine

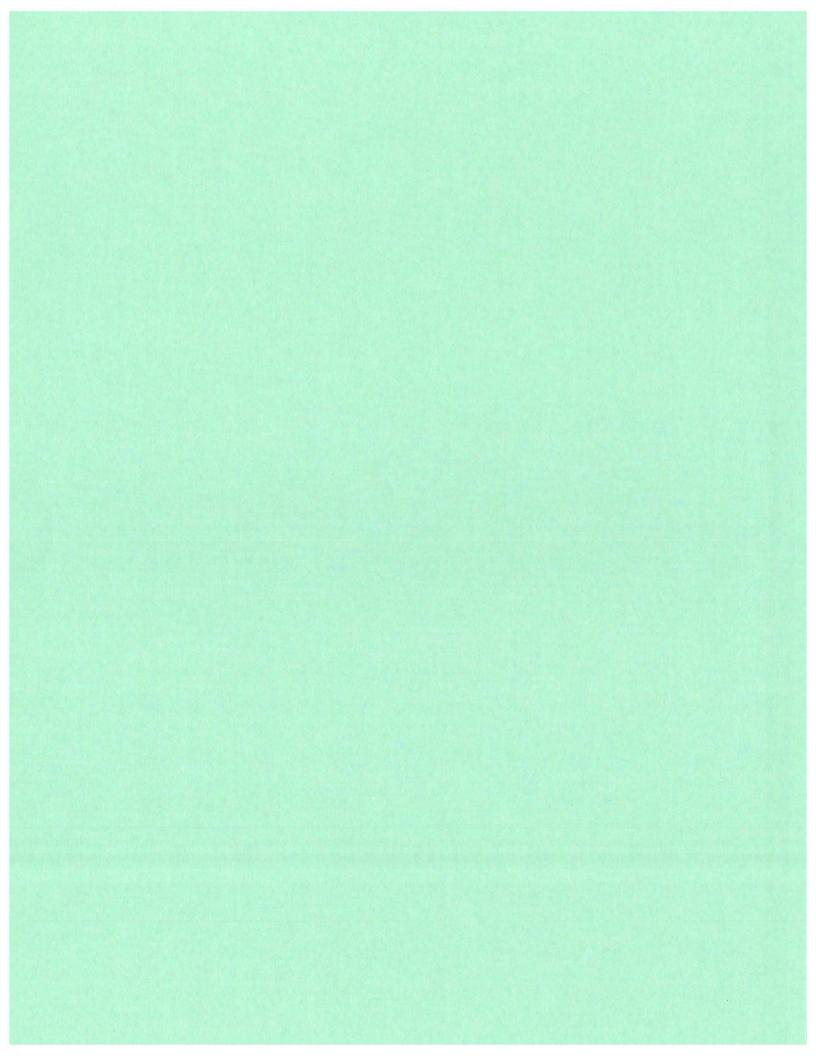
Table of Contents

Page 17 of 20

Track your package or shipment with FedEx Tracking

Table of Contents

2017				Track your package	or shipment with		· · · · · · · · · · · · · · · · · · ·			
				My Profile	My FedEx Rewards	Support	Locations	🔤 English	Search or tracking numb	er
	Shipping	Tracking	Manage	e Learn	FedEx Office	®				Log
FedEx® Tr	acking									
78550014424								-		
híp date:					Actual delivery		n	Transfer Vinterna et al		
/ed 3/01/2017 aleigh, NC US	••••••		Deliv Signed for by					4 (1997)		
2 Piece shipmei	nt	n - 2n ganta (2014) - 2004 - 2004 a 2004 a 2004	·				,			
Fravel History										
	Activity				· · · ·	Location				
= 3/02/2017 - 1	-									
	Delivered					EAST LONGM				
	On FedEx vehic					WINDSOR LO				
	At local FedEx fa					EAST GRANE				
	Departed FedEx	-				NDIANAPOL!				
	•					INDIANAPOLI				
	Arrived at FedEx									
	Arrived at FedEx	locaton			1 I. S.	14 A. A				
■ 3/01/2017 - V										
= 3/01/2017 - V		۰.				DURHAM, NC	;			
 3/01/2017 - V 3:45 pm 5:27 pm 4:03 pm 	Wednesday Left FedEx origit Picked up Shipment inform	n facility	dEx				;			
- 3/01/2017 - V 3:45 pm 5:27 pm 4:03 pm Shipment Facts	Wednesday Left FedEx origin Picked up Shipment inform	n facility lation sent to Fe	dEx		· · ·	DURHAM, NC RALEIGH, NC				
- 3/01/2017 - V 3:45 pm 5:27 pm 4:03 pm Shipment Facts Tracking number Master tracking	Wednesday Left FedEx origit Picked up Shipment inform	n facility ation sent to Fe	dEx	Service Weight	FedEx Standa 15 Ibs / 6.8 kgt	DURHAM, NC RALEIGH, NC rd Overnig s				
= 3/01/2017 - V 3:45 pm 5:27 pm 5:23 pm 5:03 pm 5:05 p	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014	n facility lation sent to Fer 1424	dEx	Weight Delivered To	FedEx Standa 15 lbs / 6.8 kgs Shipping/Rece	DURHAM, NC RALEIGH, NC rd Overnig s Biving				
- 3/01/2017 - V 3:45 pm 5:27 pm 4:03 pm Shipment Facts Tracking number Master tracking number Dimensions	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014	n facility lation sent to Fer 1424	dEx	Weight Delivered To Total shipment weig	FedEx Standa 15 Ibs / 6.8 kg: Shipping/Rece ant 15 Ibs / 6.8 kg:	DURHAM NC RALEIGH NC rd Overnig s Biving				
 3/01/2017 - V 3:45 pm 5:27 pm 4:03 pm Shipment Facts Shipment racking number Master tracking number Dimensions Total pieces 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2	n facility lation sent to Fer 1424		Weight Delivered To Total shipment weig Shipper reference	FedEx Standa 15 lbs / 6.8 kgs Shipping/Rece	DURHAM NC RALEIGH NC rd Overnig s Biving				
 3/01/2017 - V 8:45 pm 5:27 pm 4:03 pm Shipment Facts Shipment Facts Tracking number Master tracking number Dimensions Total pieces Terms 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party	n facility lation sent to Fe 1424 1490 n.	dEx AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA	Weight Delivered To Total shipment weig Shipper reference Special handling	FedEx Standa 15 Ibs / 6.8 kg: Shipping/Rece ant 15 Ibs / 6.8 kg:	DURHAALNC RALEIGH, NC rd Overnig s siving				
 3/01/2017 - V 3:45 pm 5:27 pm 4:03 pm Shipment Facts Tracking number Master tracking number Master tracking number Dimensions Total pieces Terms Packaging Standard 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2	n facility lation sent to Fer 1424		Weight Delivered To Total shipment weig Shipper reference	FedEx Standa 15 lbs / 6.8 kgt Shipping/Rece ght 15 lbs / 6.8 kgt 80	DURHAALNC RALEIGH, NC rd Overnig s siving				
 3/01/2017 - V 3:45 pm 5:27 pm 5:03 pm Shipment Facts Shipment Facts Tracking number Master tracking number Master tracking number Dimensions Total pieces Terms Packaging Standard rasit 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs	n facility lation sent to Fer 1424		Weight Delivered To Total shipment weig Shipper reference Special handling	FedEx Standa 15 lbs / 6.8 kgt Shipping/Rece ght 15 lbs / 6.8 kgt 80	DURHAALNC RALEIGH, NC rd Overnig s siving			Search or tracking num	Der
 3/01/2017 - V 3/01/2017 - V 3/27 pm 27 pm 20 pm Shipment Facts Gracking number Master tracking number Dimensions Fotal pieces Forms Packaging Standard Standard Facts 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017	n facility lation sent to Fer 1424 1490 In. aging by 3:00 pm		Weight Delivered To Total shipment weig Shipper reference Special handling section	FedEx Standa 15 lbs / 6.8 kgt Shipping/Rece ght 15 lbs / 6.8 kgt 80	DURHAM NC RALEIGH, NC rd Overnig s biving			Search or tracking num	States -
 3/01/2017 - V 45 pm 27 pm 20 pm 3 pm 4 pm<	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017	n facility lation sent to Fer 1424 1490 n. laging by 3:00 pm		Weight Delivered To Total shipment weig Shipper reference Special handling section	FedEx Standa 15 lbs / 6.8 kgt Shipping/Rece ght 15 lbs / 6.8 kgt 80	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
 3/01/2017 - V 45 pm 27 pm 23 pm 3 pm 3 hipment Facts 3 racking number Aster tracking number Aster tracking number Dimensions Total pieces Terms Packaging Standard ransit Standard fransit Stomer Focus w Customer Center rall Business Center 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017	n facility lation sent to Fer 1424 1490 In. aging by 3:00 pm	ager	Weight Delivered To Total shipment weig Shipper reference Special handling section	FedEx Standa 15 lbs / 6.8 kgt Shipping/Rece ght 15 lbs / 6.8 kgt 80	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
 3/01/2017 - V 45 pm 27 pm 23 pm 3 pm 3 hipment Facts Tracking number Aster tracking number Aster tracking number Dimensions Total pieces Terms Packaging Standard ransit Standard fransit Standard for the second seco	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017	n facility hation sent to Fer 1424 1490 n. aging by 3:00 pm by 3:00 pm stured Services edex Delivery Mar edex SameDay edex Home Delive edex TechConnec	nager	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Express FedEx Ground FedEx Office FedEx Freight	FedEx Standa 15 lbs / 6.8 kgs Shipping/Rece the 15 lbs / 6.8 kgs 80 Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
 3/01/2017 - V 45 pm 27 pm 03 pm 3 hipment Facts Tracking number Aaster tracking number Dimensions Total pieces Terms Packaging Standard Standard Fackaging Standard Standard Stomer Focus w Customer Center Business Center Tokice Guide stomer Support 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017	n facility lation sent to Fer 1424 1490 n. liging by 3:00 pm eatured Services edEx Delivery Mar edEx SameDay edEx Hoelivere Mar edEx TechConnec	nager sry st Solutions	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Express FedEx Ground FedEx Office FedEx Freight FedEx Custom C	FedEx Standa 15 lbs / 6.8 kgs Shipping/Rece ant 15 lbs / 6.8 kgs B0 Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
 3/01/2017 - V 3:45 pm 5:27 pm 5:27 pm 5:26 pm 5:27 pm 5:27 pm 5:27 pm 5:20 pm<td>Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packa 3/02/2017 5/02/2017</td><td>n facility lation sent to Fee 1424 1490 n. aging by 3:00 pm by 3:00 pm eatured Services edEx Delivery Mar edEx SameDay edEx Home Delive edEx TechConnec edEx HealthCare S nline Retail Solutio</td><td>nager sry solutions ns</td><td>Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Ground FedEx Office FedEx Custom C FedEx Trade Net</td><td>FedEx Standa 15 lbs / 6.8 kg Shipping/Rece th 15 lbs / 6.8 kg B0 Deliver Weeko</td><td>DURHAM NC RALEIGH, NC rd Overnig s biving</td><td>nt of Article Martine Article</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>States -</td>	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packa 3/02/2017 5/02/2017	n facility lation sent to Fee 1424 1490 n. aging by 3:00 pm by 3:00 pm eatured Services edEx Delivery Mar edEx SameDay edEx Home Delive edEx TechConnec edEx HealthCare S nline Retail Solutio	nager sry solutions ns	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Ground FedEx Office FedEx Custom C FedEx Trade Net	FedEx Standa 15 lbs / 6.8 kg Shipping/Rece th 15 lbs / 6.8 kg B0 Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
 3/01/2017 - V 3/01/201	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017 Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr	n facility lation sent to Fe- 1424 1490 n. aging by 3:00 pm by 3:00 pm by 3:00 pm dex Delivery Mar edex SameDay edex Home Delive adex Home Delive adex Home Delive adex Home Retail Solutio ackaging Services	hager rty Solutions ns	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Express FedEx Office FedEx Cound FedEx Cound FedEx Custom C FedEx Trade Net FedEx Cross Boo	FedEx Standa 15 lbs / 6.8 kg Shipping/Rece th 15 lbs / 6.8 kg B0 Deliver Weeko Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
 3/01/2017 - V 3:45 pm 5:27 pm 5:27 pm 5:27 pm 5:3 pm Shipment Facts Gracking number Master tracking number Master tr	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017 Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr	n facility lation sent to Fee 1424 1490 n. aging by 3:00 pm by 3:00 pm eatured Services edEx Delivery Mar edEx SameDay edEx Home Delive edEx TechConnec edEx HealthCare S nline Retail Solutio	hager rty Solutions ns	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Ground FedEx Office FedEx Custom C FedEx Trade Net	FedEx Standa 15 lbs / 6.8 kg Shipping/Rece th 15 lbs / 6.8 kg B0 Deliver Weeko Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
 3/01/2017 - V 8:45 pm 5:27 pm 4:03 pm Shipment Facts Shipment racking number Master tracking number Dimensions Total pieces 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017 Fit Fit Fit Fit Fit Fit Fit Fit Fit Fit	ation sent to Fer hacility hation sent to Fer hazar hat24 hat20 n. haging by 3:00 pm by	hager rty Solutions ns	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Express FedEx Office FedEx Cound FedEx Cound FedEx Custom C FedEx Trade Net FedEx Cross Boo	FedEx Standa 15 lbs / 6.8 kg Shipping/Rece th 15 lbs / 6.8 kg B0 Deliver Weeko Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -
3/01/2017 - V 8:45 pm 5:27 pm 4:03 pm Shipment Facts Tracking number Master tracking number Dimensions Total pieces Terms Packaging Standard transit Content Standard	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packs 3/02/2017 Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr	n facility hation sent to Fer 1424 1490 n. aging by 3:00 pm by 3:0	nager Pry Solutions Ins Services	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Express FedEx Office FedEx Cound FedEx Cound FedEx Custom C FedEx Trade Net FedEx Cross Boo	FedEx Standa 15 lbs / 6.8 kg Shipping/Rece th 15 lbs / 6.8 kg B0 Deliver Weeko Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	
 3/01/2017 - V 3:45 pm 5:27 pm 4:03 pm Shipment Facts Tracking number Master tracking number Master tracking number Dimensions Total pieces Terms Packaging Standard transit Standard transit Standard transit Statomer Focus We Customer Center nall Business Center rvice Guide ustomer Support Signa Standard transit 	Wednesday Left FedEx origin Picked up Shipment inform 778550014 778550014 24x14x14 2 Third Party Your Packa 3/02/2017 Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr	ation sent to Fer hacility hation sent to Fer hazar hat24 hat20 n. haging by 3:00 pm by	nager ary t Solutions services e Center	Weight Delivered To Total shipment weig Shipper reference Special handling section Companies FedEx Express FedEx Express FedEx Office FedEx Cound FedEx Cound FedEx Custom C FedEx Trade Net FedEx Cross Boo	FedEx Standa 15 lbs / 6.8 kg Shipping/Rece th 15 lbs / 6.8 kg B0 Deliver Weeko Deliver Weeko	DURHAM NC RALEIGH, NC rd Overnig s biving	nt of Article Martine Article		· · · · · · · · · · · · · · · · · · ·	States -


© FedEx 1995-2017

Careers | Global Home | Site Map | fedex.com Terms of Use | Security and Privacy

Table	of	Contents
rubic	01	Contonio

39 Spruce St.		e n n	. Pee	e p •	Tab	le of C
East Longmeadow, MA. 01028 P: 413-525-2332			LLABORA	TORY		
F: 413-525-6405 www.contestiabs.com	Compute D			Pa	age 1 of 2	
	<u>] Sample Re</u>	ecelpt Un	eckiist			
CLIENT NAME: + MT +	HICKMan		BY:	<u>р</u> DA	TE: $03/0$	3//J
1) Was the chain(s) of custody r	elinquished and sig	gned?	Yes U	No	No COC Ir	ncl.
2) Does the chain agree with the			Yes	No		
If not, explain:				-		
3) Are all the samples in good could have all the samples in good could have a second statement of the samples in good could be a second statement of the samples in good statement of the samples in goo	ondition?		Yes _/	No		
4) How were the samples receiv	ed:			r	/	
On Ice Direct from S	ampling	Ambient	In Co	oler(s) 💆		
Were the samples received in Te					o N/A _	
Temperature °C by Temp blank	••••••••••••••••••••••••••••••••••••••	Temperatur	e °C by Temp	gun _	4°C +1	<i> </i>
5) Are there Dissolved samples	for the lab to filter?		Yes	No U	/	
Who was notified						
6) Are there any RUSH or SHOR				No 🗸	/	
Who was notified						······
			Permission to	subcontrac	t samples? Yes	No
7) Location where samples are stor	ed:		(Walk-in clier	nts only) if no	ot already approve	d
,			•		-	
8) Do all samples have the prope		-				
b) Do all samples have the prope	er Acid pH: Yes	No	N/A	\mathcal{L}		
, , , , , , , , , , , , , , , , , , ,	er Acid pH: Yes er Base pH: Yes		N/A N/A			
9) Do all samples have the prope	er Base pH: Yes	No	N/A		N/A	,
9) Do all samples have the prope 10) Was the PC notified of any di	er Base pH: Yes screpancies with th	No ଜୁ ିିି C vs the	N/A samples:	Yes	N/A	/
9) Do all samples have the prope 10) Was the PC notified of any di	er Base pH: Yes screpancies with th Ontainers re e	No ଜୁ ିିି C vs the	N/A samples:	Yes		/
9) Do all samples have the prope 10) Was the PC notified of any di Cc	er Base pH: Yes screpancies with th	No ଜୁ ିିି C vs the	N/A samples: t Con-Te	Yes	N/A # of contain	ers
9) Do all samples have the properties of any diagonal samples have the properties of any diagonal straight for the same straight for	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am	Yes SST		ers
9) Do all samples have the properties of any diagonal samples have the properties of any diagonal straight for the same straight for	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceived at	N/A samples: t Con-Te 16 oz am 8 oz amber/c	Yes SST ber lear jar	# of contain	ers
9) Do all samples have the properties of any diagonal samples have the properties of any diagonal di d	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c	Yes est ber lear jar lear jar		ers
9) Do all samples have the properties of any diagonal samples have the properties of any diagonal straight for the same straight for	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c	Yes est ber lear jar lear jar lear jar	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c	Yes SST ber lear jar lear jar lear jar lear jar Ziploc	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c Plastic Bag /	Yes SST ber lear jar lear jar lear jar Ziploc it	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Ca 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c Plastic Bag / SOC K	Yes Sest ber lear jar lear jar lear jar lear jar ziploc it e Kit	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c Plastic Bag / SOC K Perchlorat	Yes Sest ber lear jar lear jar lear jar Ziploc it e Kit bottle	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Ca 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c 2 oz amber/c Plastic Bag / SOC K Perchlorat Flashpoint	Yes Sest ber lear jar lear jar lear jar Ziploc it e Kit bottle s jar	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Ca 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	er Base pH: Yes screpancies with th Ontainers re e	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c Plastic Bag / SOC K Perchlorat Flashpoint Other glas	Yes Pest ber lear jar lear jar lear jar Ziploc it e Kit bottle s jar	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Ca 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	er Base pH: Yes screpancies with th ontainers ree # of containers	No CoC vs the Ceivod at	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c Plastic Bag / SOC K Perchlorat Flashpoint Other glas	Yes Sest ber lear jar lear jar lear jar Ziploc it e Kit bottle s jar	# of contain	ers
9) Do all samples have the proper 10) Was the PC notified of any di Ca 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore	er Base pH: Yes screpancies with th ontainers ree # of containers	No No Ceived at hanol	N/A samples: t Con-Te 16 oz am 8 oz amber/c 4 oz amber/c 2 oz amber/c Plastic Bag / SOC K Perchlorat Flashpoint Other glas	Yes Pest ber lear jar lear jar lear jar Ziploc it e Kit bottle s jar	# of contain	ers

4	Page 2 of 2		
Login Sample	e Receipt Checkli	<u>st</u>	
(Rejection Criteria Listing	- Using Sample A	Acceptance Policy)	
Any False statement will t	be brought to the	attention of Client	Comment
Question	Answer (True/Fa		Comment
		-	
1) The cooler's custody seal, if present, is intact.	NA		
2) The cooler or samples do not appear to have been compromised or tampered with.	T		
3) Samples were received on ice.			and the second
4) Cooler Temperature is acceptable.	1 T		
5) Cooler Temperature is recorded.	· _	2.4244	
6) COC is filled out in ink and legible.		· · · ·	
7) COC is filled out with all pertinent information.	Γ		
8) Field Sampler's name present on COC.	IT		
 There are no discrepancies between the sample IDs on the container and the COC. 	T		
10) Samples are received within Holding Time.	Π		
11) Sample containers have legible labels.	T		
12) Containers are not broken or leaking.	T	· · · · · · · · · · · · · · · · · · ·	
13) Air Cassettes are not broken/open.	NA		
14) Sample collection date/times are provided.	-T		
15) Appropriate sample containers are used.	Т		
16) Proper collection media used.	Ι <u>΄</u>		
17) No headspace sample bottles are completely filled.	MA		······································
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	+		
19) Trip blanks provided if applicable.	NA		
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	MA		
21) Samples do not require splitting or compositing.	1)	Date/Time:	
Who notified of Fall Doc #277 Rev. 4 August 2013 Log-In Technician		Date/Time: Date/Time:	03/02/17 946

Full-Service Analytical & Environmental Solutions NC Certification No. 402 NC Drinking Water Cert No. 37735 SC Certification No. 99012 **Case Narrative**

03/20/2017

Hart & Hickman (Raleigh) Joe Starr 3334 Hillsborough St. Raleigh, NC 27607 Project: American Legion - Chapel Hill TCLT.003 Project No.: TCLT.003 Lab Submittal Date: 03/16/2017 Prism Work Order: 7030286

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

othill. Jon

Robbi A. Jones President/Project Manager

Rock a. J

Reviewed By Robbi A. Jones President/Project Manager

Data Qualifiers Key Reference:

- D RPD value outside of the control limits.
- DO Surrogates diluted out.
- LCS recovery outside of the QC limits. LCSD recovery within the limits. No further action taken.
- BRL Below Reporting Limit
- MDL Method Detection Limit
- RPD Relative Percent Difference
- * Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Sample Receipt Summary

03/20/2017

Prism Work Order: 7030286

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
SB-5	7030286-01	Solid	03/15/17	03/16/17

Samples were received in good condition at 2.5 degrees C unless otherwise noted.

Summary of Detections

03/20/2017 Prism Work Order: 7030286

Prism ID	Client ID	Parameter	Method	Result	Units
7030286-01	SB-5	C11-C22 Aromatics	*MADEP EPH	93	mg/kg dry
7030286-01	SB-5	1-Methylnaphthalene	*8270D	0.53	mg/kg dry
7030286-01	SB-5	1,2,4-Trimethylbenzene	*8260B	0.0089	mg/kg dry
7030286-01	SB-5	1,2-Dichlorobenzene	*8260B	0.0073	mg/kg dry
7030286-01	SB-5	4-Isopropyltoluene	*8260B	0.025	mg/kg dry
7030286-01	SB-5	Chlorobenzene	*8260B	0.0053	mg/kg dry
7030286-01	SB-5	Ethylbenzene	*8260B	0.0078	mg/kg dry
7030286-01	SB-5	Naphthalene	*8260B	0.13	mg/kg dry
7030286-01	SB-5	n-Butylbenzene	*8260B	0.0092	mg/kg dry
7030286-01	SB-5	n-Propylbenzene	*8260B	0.017	mg/kg dry
7030286-01	SB-5	sec-Butylbenzene	*8260B	0.015	mg/kg dry
7030286-01	SB-5	C9-C12 Aliphatics	*MADEP VPH	75	mg/kg dry
7030286-01	SB-5	C9-C10 Aromatics	*MADEP VPH	110	mg/kg dry

03/20/2017

Hart & Hickman (Raleigh) Attn: Joe Starr 3334 Hillsborough St. Raleigh, NC 27607

Project: American Legion - Chapel Hill TCLT.003 Project No.: TCLT.003 Sample Matrix: Solid Client Sample ID: SB-5 Prism Sample ID: 7030286-01 Prism Work Order: 7030286 Time Collected: 03/15/17 17:40 Time Submitted: 03/16/17 08:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Extractable Petroleum Hydroca	arbons by GC/FID								
C9-C18 Aliphatics	BRL	mg/kg dry	32	1.4	1	*MADEP EPH	3/17/17 2:18	3 ZRC	P7C0256
C19-C36 Aliphatics	BRL	mg/kg dry	32	2.6	1	*MADEP EPH	3/17/17 2:18	3 ZRC	P7C0256
C11-C22 Aromatics	93	mg/kg dry	13	1.7	1	*MADEP EPH	3/17/17 2:18	ZRC	P7C0256
			Surrogate			Recove	ery	Control	Limits
			1-Chlorooct	adecane		77	%	40-140	
			o-Terphenyl			83	%	40-140	
			2-Fluorobipł	nenyl		93	%	40-140	
			2-Bromonap	hthalene		94	%	40-140	
General Chemistry Parameters	5								
% Solids	78.0	% by Weight	0.100	0.100	1	*SM2540 G	3/17/17 16:0	0 JLB	P7C0309
Semivolatile Organic Compour	nds by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.066	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.064	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.059	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.062	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
1-Methylnaphthalene	0.53	mg/kg dry	0.42	0.081	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.079	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.082	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.065	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.059	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.051	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.056	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2-Chloronaphthalene	BRL	mg/kg dry	0.42	0.061	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2-Chlorophenol	BRL	mg/kg dry	0.42	0.060	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2-Methylnaphthalene	BRL	mg/kg dry	0.42	0.068	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2-Methylphenol	BRL	mg/kg dry	0.42	0.054	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
2-Nitrophenol	BRL	mg/kg dry	0.42	0.077	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.42	0.083	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.052	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.42	0.063	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.073	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.42	0.059	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
4-Chloroaniline	BRL	mg/kg dry	0.42	0.051	1	*8270D	3/17/17 0:12	2 JMV	P7C0264
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.42	0.055	1	*8270D	3/17/17 0:12		P7C0264
4-Nitrophenol	BRL	mg/kg dry	0.42	0.065	1	*8270D	3/17/17 0:12		P7C0264
Acenaphthene	BRL	mg/kg dry	0.42	0.057	1	*8270D	3/17/17 0:12		P7C0264
Acenaphthylene	BRL	mg/kg dry	0.42	0.061	1	*8270D	3/17/17 0:12		P7C0264
Anthracene	BRL	mg/kg dry	0.42	0.068	1	*8270D	3/17/17 0:12		P7C0264
Azobenzene	BRL	mg/kg dry	0.42	0.056	1	*8270D	3/17/17 0:12		P7C0264
Benzo(a)anthracene	BRL	mg/kg dry	0.42	0.055	1	*8270D	3/17/17 0:12		P7C0264
Benzo(a)pyrene	BRL	mg/kg dry	0.42	0.046	1	*8270D	3/17/17 0:12	2 JMV	P7C0264

Project: American Legion - Chapel Hill TCLT.003 Project No.: TCLT.003 Sample Matrix: Solid Laboratory Report

03/20/2017

Client Sample ID: SB-5 Prism Sample ID: 7030286-01 Prism Work Order: 7030286 Time Collected: 03/15/17 17:40 Time Submitted: 03/16/17 08:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
Benzo(b)fluoranthene	BRL	mg/kg dry	0.42	0.049	1	*8270D	3/17/17	0:12	JMV	P7C0264
Benzo(g,h,i)perylene	BRL	mg/kg dry	0.42	0.046	1	*8270D	3/17/17	0:12	JMV	P7C0264
Benzo(k)fluoranthene	BRL	mg/kg dry	0.42	0.055	1	*8270D	3/17/17	0:12	JMV	P7C0264
Benzoic Acid	BRL	mg/kg dry	0.42	0.036	1	*8270D	3/17/17	0:12	JMV	P7C0264
Benzyl alcohol	BRL	mg/kg dry	0.42	0.056	1	*8270D	3/17/17	0:12	JMV	P7C0264
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.42	0.073	1	*8270D	3/17/17	0:12	JMV	P7C0264
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.060	1	*8270D	3/17/17	0:12	JMV	P7C0264
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.42	0.072	1	*8270D	3/17/17	0:12	JMV	P7C0264
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.42	0.063	1	*8270D	3/17/17	0:12	JMV	P7C0264
Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.060	1	*8270D	3/17/17	0:12	JMV	P7C0264
Chrysene	BRL	mg/kg dry	0.42	0.053	1	*8270D	3/17/17	0:12	JMV	P7C0264
Dibenzo(a,h)anthracene	BRL	mg/kg dry	0.42	0.051	1	*8270D	3/17/17	0:12	JMV	P7C0264
Dibenzofuran	BRL	mg/kg dry	0.42	0.064	1	*8270D	3/17/17	0:12	JMV	P7C0264
Diethyl phthalate	BRL	mg/kg dry	0.42	0.058	1	*8270D	3/17/17	0:12	JMV	P7C0264
Dimethyl phthalate	BRL	mg/kg dry	0.42	0.056	1	*8270D	3/17/17	0:12	JMV	P7C0264
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.060	1	*8270D	3/17/17	0:12	JMV	P7C0264
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.052	1	*8270D	3/17/17	0:12	JMV	P7C0264
Fluoranthene	BRL	mg/kg dry	0.42	0.054	1	*8270D	3/17/17	0:12	JMV	P7C0264
Fluorene	BRL	mg/kg dry	0.42	0.061	1	*8270D	3/17/17	0:12	JMV	P7C0264
Hexachlorobenzene	BRL	mg/kg dry	0.42	0.067	1	*8270D	3/17/17	0:12	JMV	P7C0264
Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.076	1	*8270D	3/17/17	0:12	JMV	P7C0264
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.075	1	*8270D	3/17/17	0:12	JMV	P7C0264
Hexachloroethane	BRL	mg/kg dry	0.42	0.071	1	*8270D	3/17/17	0:12	JMV	P7C0264
Indeno(1,2,3-cd)pyrene	BRL	mg/kg dry	0.42	0.048	1	*8270D	3/17/17	0:12	JMV	P7C0264
Isophorone	BRL	mg/kg dry	0.42	0.057	1	*8270D	3/17/17	0:12	JMV	P7C0264
Naphthalene	BRL	mg/kg dry	0.42	0.068	1	*8270D	3/17/17	0:12	JMV	P7C0264
Nitrobenzene	BRL	mg/kg dry	0.42	0.060	1	*8270D	3/17/17	0:12	JMV	P7C0264
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.067	1	*8270D	3/17/17	0:12	JMV	P7C0264
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.064	1	*8270D	3/17/17	0:12	JMV	P7C0264
Pentachlorophenol	BRL	mg/kg dry	0.42	0.050	1	*8270D	3/17/17	0:12	JMV	P7C0264
Phenanthrene	BRL	mg/kg dry	0.42	0.055	1	*8270D	3/17/17	0:12	JMV	P7C0264
Phenol	BRL	mg/kg dry	0.42	0.062	1	*8270D	3/17/17	0:12	JMV	P7C0264
Pyrene	BRL	mg/kg dry	0.42	0.056	1	*8270D	3/17/17	0:12	JMV	P7C0264
			Surrogate			Recov	very		Control I	_imits
			2,4,6-Tribro	mophenol		89	9%		39-132	
			2-Fluorobiph	nenyl		83	3 %		44-115	
			2-Fluorophe	nol		83	3 %		35-115	
			Nitrobenzen	e-d5		77	7 %		37-122	
			Phenol-d5			81	1 %		34-121	
			Terphenyl-d	14		98	3 %		54-127	
Volatile Organic Compounds by GO	C/MS									
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0052	0.00043	1	*8260B	3/17/17	12:54	ANG	P7C0297
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0052	0.00025	1	*8260B	3/17/17	12:54	ANG	P7C0297

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Project: American Legion - Chapel Hill TCLT.003 Project No.: TCLT.003 Sample Matrix: Solid 03/20/2017

Client Sample ID: SB-5 Prism Sample ID: 7030286-01 Prism Work Order: 7030286 Time Collected: 03/15/17 17:40 Time Submitted: 03/16/17 08:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst	Batch ID
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0052	0.00035	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0052	0.00046	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,1-Dichloroethane	BRL	mg/kg dry	0.0052	0.00015	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,1-Dichloroethylene	BRL	mg/kg dry	0.0052	0.00023	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,1-Dichloropropylene	BRL	mg/kg dry	0.0052	0.00029	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0052	0.00030	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0052	0.00067	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0052	0.00039	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2,4-Trimethylbenzene	0.0089	mg/kg dry	0.0052	0.00040	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2-Dibromoethane	BRL	mg/kg dry	0.0052	0.00021	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2-Dichlorobenzene	0.0073	mg/kg dry	0.0052	0.00025	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2-Dichloroethane	BRL	mg/kg dry	0.0052	0.00031	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,2-Dichloropropane	BRL	mg/kg dry	0.0052	0.00033	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0052	0.00040	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0052	0.00035	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,3-Dichloropropane	BRL	mg/kg dry	0.0052	0.00026	1	*8260B	3/17/17 12:54	ANG	P7C0297
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0052	0.00021	1	*8260B	3/17/17 12:54	ANG	P7C0297
2,2-Dichloropropane	BRL	mg/kg dry	0.0052	0.00025	1	*8260B	3/17/17 12:54	ANG	P7C0297
2-Chlorotoluene	BRL	mg/kg dry	0.0052	0.00027	1	*8260B	3/17/17 12:54	ANG	P7C0297
4-Chlorotoluene	BRL	mg/kg dry	0.0052	0.00031	1	*8260B	3/17/17 12:54	ANG	P7C0297
4-Isopropyltoluene	0.025	mg/kg dry	0.0052	0.00025	1	*8260B	3/17/17 12:54	ANG	P7C0297
Acetone	BRL	mg/kg dry	0.052	0.0013	1	*8260B	3/17/17 12:54	ANG	P7C0297
Benzene	BRL	mg/kg dry	0.0031	0.00031	1	*8260B	3/17/17 12:54	ANG	P7C0297
Bromobenzene	BRL	mg/kg dry	0.0052	0.00044	1	*8260B	3/17/17 12:54	ANG	P7C0297
Bromochloromethane	BRL	mg/kg dry	0.0052	0.00029	1	*8260B	3/17/17 12:54	ANG	P7C0297
Bromodichloromethane	BRL	mg/kg dry	0.0052	0.00029	1	*8260B	3/17/17 12:54	ANG	P7C0297
Bromoform	BRL	mg/kg dry	0.0052	0.00060	1	*8260B	3/17/17 12:54	ANG	P7C0297
Bromomethane	BRL	mg/kg dry	0.010	0.00065	1	*8260B	3/17/17 12:54	ANG	P7C0297
Carbon Tetrachloride	BRL	mg/kg dry	0.0052	0.00026	1	*8260B	3/17/17 12:54	ANG	P7C0297
Chlorobenzene	0.0053	mg/kg dry	0.0052	0.00028	1	*8260B	3/17/17 12:54	ANG	P7C0297
Chloroethane	BRL	mg/kg dry	0.010	0.00044	1	*8260B	3/17/17 12:54	ANG	P7C0297
Chloroform	BRL	mg/kg dry	0.0052	0.00038	1	*8260B	3/17/17 12:54	ANG	P7C0297
Chloromethane	BRL	mg/kg dry	0.0052	0.00035	1	*8260B	3/17/17 12:54	ANG	P7C0297
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0052	0.00022	1	*8260B	3/17/17 12:54	ANG	P7C0297
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0052	0.00018	1	*8260B	3/17/17 12:54	ANG	P7C0297
Dibromochloromethane	BRL	mg/kg dry	0.0052	0.00022	1	*8260B	3/17/17 12:54	ANG	P7C0297
Dichlorodifluoromethane	BRL	mg/kg dry	0.0052	0.00024	1	*8260B	3/17/17 12:54	ANG	P7C0297
Ethylbenzene	0.0078	mg/kg dry	0.0052	0.00020	1	*8260B	3/17/17 12:54	ANG	P7C0297
Isopropyl Ether	BRL	mg/kg dry	0.0052	0.00021	1	*8260B	3/17/17 12:54	ANG	P7C0297
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0052	0.00031	1	*8260B	3/17/17 12:54	ANG	P7C0297
m,p-Xylenes	BRL	mg/kg dry	0.010	0.00048	1	*8260B	3/17/17 12:54	ANG	P7C0297
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.052	0.00047	1	*8260B	3/17/17 12:54	ANG	P7C0297
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.002	0.00047	1	*8260B	3/17/17 12:54	ANG	P7C0297
	DRL	nig/kg ury	0.10	0.00047	1	"8260B	3/17/17 12:54	ANG	F/CUZ:

Project: American Legion - Chapel Hill TCLT.003 Project No.: TCLT.003 Sample Matrix: Solid 03/20/2017

Client Sample ID: SB-5 Prism Sample ID: 7030286-01 Prism Work Order: 7030286 Time Collected: 03/15/17 17:40 Time Submitted: 03/16/17 08:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.052	0.00045	1	*8260B	3/17/17 12:54	ANG	P7C0297
Methylene Chloride	BRL	mg/kg dry	0.0052	0.00029	1	*8260B	3/17/17 12:54	ANG	P7C0297
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.010	0.00017	1	*8260B	3/17/17 12:54	ANG	P7C0297
Naphthalene	0.13	mg/kg dry	0.010	0.00017	1	*8260B	3/17/17 12:54	ANG	P7C0297
n-Butylbenzene	0.0092	mg/kg dry	0.0052	0.00027	1	*8260B	3/17/17 12:54	ANG	P7C0297
n-Propylbenzene	0.017	mg/kg dry	0.0052	0.00031	1	*8260B	3/17/17 12:54	ANG	P7C0297
o-Xylene	BRL	mg/kg dry	0.0052	0.00022	1	*8260B	3/17/17 12:54	ANG	P7C0297
sec-Butylbenzene	0.015	mg/kg dry	0.0052	0.00025	1	*8260B	3/17/17 12:54	ANG	P7C0297
Styrene	BRL	mg/kg dry	0.0052	0.00032	1	*8260B	3/17/17 12:54	ANG	P7C0297
tert-Butylbenzene	BRL	mg/kg dry	0.0052	0.00018	1	*8260B	3/17/17 12:54	ANG	P7C0297
Tetrachloroethylene	BRL	mg/kg dry	0.0052	0.00025	1	*8260B	3/17/17 12:54	ANG	P7C0297
Toluene	BRL	mg/kg dry	0.0052	0.00030	1	*8260B	3/17/17 12:54	ANG	P7C0297
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0052	0.00031	1	*8260B	3/17/17 12:54	ANG	P7C0297
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0052	0.00028	1	*8260B	3/17/17 12:54	ANG	P7C0297
Trichloroethylene	BRL	mg/kg dry	0.0052	0.00034	1	*8260B	3/17/17 12:54	ANG	P7C0297
Trichlorofluoromethane	BRL	mg/kg dry	0.0052	0.00034	1	*8260B	3/17/17 12:54	ANG	P7C0297
Vinyl acetate	BRL	mg/kg dry	0.026	0.00072	1	*8260B	3/17/17 12:54	ANG	P7C0297
Vinyl chloride	BRL	mg/kg dry	0.0052	0.00025	1	*8260B	3/17/17 12:54	ANG	P7C0297
Xylenes, total	BRL	mg/kg dry	0.016	0.00098	1	*8260B	3/17/17 12:54	ANG	P7C0297
			Surrogate			Recove	ery	Control L	imits
			4-Bromofluo	robenzene		101	%	70-130	
			Dibromofluo	romethane		99	%	84-123	
			Toluene-d8			98	%	76-129	
Volatile Petroleum Hydrocarbo	ons by GC/PID/FID								
C5-C8 Aliphatics	BRL	mg/kg dry	34	1.0	1000	*MADEP VPH	3/20/17 11:27	ANG	P7C0299
C9-C12 Aliphatics	75	mg/kg dry	34	4.1	1000	*MADEP VPH	3/20/17 11:27	ANG	P7C0299
C9-C10 Aromatics	110	mg/kg dry	34	0.32	1000	*MADEP VPH	3/20/17 11:27	ANG	P7C0299
			Surrogate			Recove	ery	Control L	imits
			2,5-Dibromo	toluene (Pl	D)	0 9	%	70-130	DO
			2,5-Dibromo	toluene (Fl	D)	0 9	%	70-130	DO

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003

Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7C0297 - 5035										
Blank (P7C0297-BLK1)			F	Prepared	& Analyze	d: 03/17/1	7			
1,1,1,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,1,1-Trichloroethane	BRL	0.0050	mg/kg wet							
1,1,2,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,1,2-Trichloroethane	BRL	0.0050	mg/kg wet							
1,1-Dichloroethane	BRL	0.0050	mg/kg wet							
1,1-Dichloroethylene	BRL	0.0050	mg/kg wet							
1,1-Dichloropropylene	BRL	0.0050	mg/kg wet							
1,2,3-Trichlorobenzene	BRL	0.0050	mg/kg wet							
1,2,3-Trichloropropane	BRL	0.0050	mg/kg wet							
1,2,4-Trichlorobenzene	BRL	0.0050	mg/kg wet							
1,2,4-Trimethylbenzene	BRL	0.0050	mg/kg wet							
1,2-Dibromoethane	BRL	0.0050	mg/kg wet							
1,2-Dichlorobenzene	BRL	0.0050	mg/kg wet							
1,2-Dichloroethane	BRL	0.0050	mg/kg wet							
1,2-Dichloropropane	BRL	0.0050	mg/kg wet							
1,3,5-Trimethylbenzene	BRL	0.0050	mg/kg wet							
1,3-Dichlorobenzene	BRL	0.0050	mg/kg wet							
1,3-Dichloropropane	BRL	0.0050	mg/kg wet							
1,4-Dichlorobenzene	BRL	0.0050	mg/kg wet							
2,2-Dichloropropane	BRL	0.0050	mg/kg wet							
2-Chlorotoluene	BRL	0.0050	mg/kg wet							
4-Chlorotoluene	BRL	0.0050	mg/kg wet							
4-Isopropyltoluene	BRL	0.0050	mg/kg wet							
Acetone	BRL	0.050	mg/kg wet							
Benzene	BRL	0.0030	mg/kg wet							
Bromobenzene	BRL	0.0050	mg/kg wet							
Bromochloromethane	BRL	0.0050	mg/kg wet							
Bromodichloromethane	BRL	0.0050	mg/kg wet							
Bromoform	BRL	0.0050	mg/kg wet							
Bromomethane	BRL	0.010	mg/kg wet							
Carbon Tetrachloride	BRL	0.0050	mg/kg wet							
Chlorobenzene	BRL	0.0050	mg/kg wet							
Chloroethane	BRL	0.010	mg/kg wet							
Chloroform	BRL	0.0050	mg/kg wet							
Chloromethane	BRL	0.0050	mg/kg wet							
cis-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet							
cis-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet							
Dibromochloromethane	BRL	0.0050	mg/kg wet							
Dichlorodifluoromethane	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
Isopropyl Ether	BRL	0.0050	mg/kg wet							
Isopropylbenzene (Cumene)	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
Methyl Butyl Ketone (2-Hexanone)	BRL	0.050	mg/kg wet							
Methyl Ethyl Ketone (2-Butanone)	BRL	0.10	mg/kg wet							
Methyl Isobutyl Ketone	BRL	0.050	mg/kg wet							

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Volatile Organic Compounds by GC/MS - Quality Control

	. .	Reporting		Spike	Source		%REC		RPD	N <i>i</i>
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7C0297 - 5035										
Blank (P7C0297-BLK1)				Prepared	& Analyze	d: 03/17/1	7			
Methylene Chloride	BRL	0.0050	mg/kg wet							
Methyl-tert-Butyl Ether	BRL	0.010	mg/kg wet							
Naphthalene	BRL	0.010	mg/kg wet							
n-Butylbenzene	BRL	0.0050	mg/kg wet							
n-Propylbenzene	BRL	0.0050	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
sec-Butylbenzene	BRL	0.0050	mg/kg wet							
Styrene	BRL	0.0050	mg/kg wet							
tert-Butylbenzene	BRL	0.0050	mg/kg wet							
Tetrachloroethylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
trans-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet							
trans-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet							
Trichloroethylene	BRL	0.0050	mg/kg wet							
Trichlorofluoromethane	BRL	0.0050	mg/kg wet							
Vinyl acetate	BRL	0.025	mg/kg wet							
Vinyl chloride	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	51.3		ug/L	50.00		103	70-130			
Surrogate: Dibromofluoromethane	49.8		ug/L	50.00		100	84-123			
Surrogate: Toluene-d8	49.8		ug/L	50.00		100	76-129			
LCS (P7C0297-BS1)				Prepared	& Analyze	d: 03/17/1	7			
1,1,1,2-Tetrachloroethane	0.0476	0.0050	mg/kg wet	0.05000		95	72-115			
1,1,1-Trichloroethane	0.0511	0.0050	mg/kg wet	0.05000		102	67-131			
1,1,2,2-Tetrachloroethane	0.0496	0.0050	mg/kg wet	0.05000		99	56-126			
1,1,2-Trichloroethane	0.0488	0.0050	mg/kg wet	0.05000		98	70-133			
1,1-Dichloroethane	0.0466	0.0050	mg/kg wet	0.05000		93	74-127			
1,1-Dichloroethylene	0.0485	0.0050	mg/kg wet	0.05000		97	67-149			
1,1-Dichloropropylene	0.0498	0.0050	mg/kg wet	0.05000		100	71-130			
1,2,3-Trichlorobenzene	0.0499	0.0050	mg/kg wet	0.05000		100	68-130			
1,2,3-Trichloropropane	0.0500	0.0050	mg/kg wet	0.05000		100	60-137			
1,2,4-Trichlorobenzene	0.0507	0.0050	mg/kg wet	0.05000		101	66-125			
1,2,4-Trimethylbenzene	0.0510	0.0050	mg/kg wet	0.05000		102	69-129			
1,2-Dibromoethane	0.0512	0.0050	mg/kg wet	0.05000		102	70-132			
1,2-Dichlorobenzene	0.0506	0.0050	mg/kg wet	0.05000		101	72-123			
1,2-Dichloroethane	0.0468	0.0050	mg/kg wet	0.05000		94	68-128			
1,2-Dichloropropane	0.0470	0.0050	mg/kg wet	0.05000		94	73-130			
1,3,5-Trimethylbenzene	0.0499	0.0050	mg/kg wet	0.05000		100	69-128			
1,3-Dichlorobenzene	0.0496	0.0050	mg/kg wet	0.05000		99	71-120			
1,3-Dichloropropane	0.0484	0.0050	mg/kg wet	0.05000		97	75-124			
1,4-Dichlorobenzene	0.0501	0.0050	mg/kg wet	0.05000		100	71-123			
2,2-Dichloropropane	0.0490	0.0050	mg/kg wet	0.05000		98	50-142			
2-Chlorotoluene	0.0493	0.0050	mg/kg wet	0.05000		99	67-124			
4-Chlorotoluene	0.0499	0.0050	mg/kg wet	0.05000		100	71-126			
4-Isopropyltoluene	0.0501	0.0050	mg/kg wet	0.05000		100	68-129			
Acetone	0.0990	0.050	mg/kg wet	0.1000		99	29-198			

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003

3/20/17

Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7C0297 - 5035										
LCS (P7C0297-BS1)				Prepared	& Analyze	d: 03/17/1	7			
Benzene	0.0474	0.0030	mg/kg wet	0.05000		95	74-127			
Bromobenzene	0.0482	0.0050	mg/kg wet	0.05000		96	73-125			
Bromochloromethane	0.0485	0.0050	mg/kg wet	0.05000		97	72-134			
Bromodichloromethane	0.0530	0.0050	mg/kg wet	0.05000		106	75-122			
Bromoform	0.0470	0.0050	mg/kg wet	0.05000		94	66-135			
Bromomethane	0.0513	0.010	mg/kg wet	0.05000		103	20-180			
Carbon Tetrachloride	0.0558	0.0050	mg/kg wet	0.05000		112	64-143			
Chlorobenzene	0.0488	0.0050	mg/kg wet	0.05000		98	74-118			
Chloroethane	0.0501	0.010	mg/kg wet	0.05000		100	33-149			
Chloroform	0.0475	0.0050	mg/kg wet	0.05000		95	73-127			
Chloromethane	0.0535	0.0050	mg/kg wet	0.05000		107	45-143			
cis-1,2-Dichloroethylene	0.0473	0.0050	mg/kg wet	0.05000		95	76-134			
cis-1,3-Dichloropropylene	0.0536	0.0050	mg/kg wet	0.05000		107	71-125			
Dibromochloromethane	0.0494	0.0050	mg/kg wet	0.05000		99	73-122			
Dichlorodifluoromethane	0.0501	0.0050	mg/kg wet	0.05000		100	26-146			
Ethylbenzene	0.0497	0.0050	mg/kg wet	0.05000		99	74-128			
Isopropyl Ether	0.0459	0.0050	mg/kg wet	0.05000		92	59-159			
Isopropylbenzene (Cumene)	0.0494	0.0050	mg/kg wet	0.05000		99	68-126			
m,p-Xylenes	0.0998	0.010	mg/kg wet	0.1000		100	75-124			
Methyl Butyl Ketone (2-Hexanone)	0.0499	0.050	mg/kg wet			100	61-157			
Methyl Ethyl Ketone (2-Butanone)	0.0434	0.10	mg/kg wet			87	63-149			
Methyl Isobutyl Ketone	0.0496	0.050	mg/kg wet			99	57-162			
Methylene Chloride	0.0438	0.0050	mg/kg wet			88	74-129			
Methyl-tert-Butyl Ether	0.0491	0.010	mg/kg wet			98	70-130			
Naphthalene	0.0504	0.010	mg/kg wet			101	57-157			
n-Butylbenzene	0.0514	0.0050	mg/kg wet			103	65-135			
n-Propylbenzene	0.0502	0.0050	mg/kg wet			100	67-130			
o-Xylene	0.0490	0.0050	mg/kg wet			98	74-126			
sec-Butylbenzene	0.0505	0.0050	mg/kg wet			101	66-131			
Styrene	0.0506	0.0050	mg/kg wet			101	77-121			
tert-Butylbenzene	0.0493	0.0050	mg/kg wet			99	67-132			
Tetrachloroethylene	0.0477	0.0050	mg/kg wet			95	68-130			
Toluene	0.0478	0.0050	mg/kg wet			96	71-129			
trans-1,2-Dichloroethylene	0.0483	0.0050	mg/kg wet			97	73-132			
trans-1,3-Dichloropropylene	0.0473	0.0050	mg/kg wet			95	68-123			
Trichloroethylene	0.0482	0.0050	mg/kg wet			96	75-133			
Trichlorofluoromethane	0.0549	0.0050	mg/kg wet			110	44-146			
Vinyl acetate	0.0538	0.025	mg/kg wet			108	85-161			
Vinyl chloride	0.0505	0.0050	mg/kg wet			101	48-147			
Xylenes, total	0.149	0.015	mg/kg wet			99	74-126			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.00		101	70-130			
Surrogate: Dibromofluoromethane	48.2		ug/L ug/L	50.00 50.00		96	84-123			
Surrogate: Toluene-d8	40.2		ug/L ug/L	50.00 50.00		90 100	76-129			
ourrogate. roluene-uo	43.0		uy/L	50.00		100	10-123			

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 3/20/17

Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7C0297 - 5035				Dranarad	9 Apolyzo	4.02/17/1	7			
LCS Dup (P7C0297-BSD1) 1,1,1,2-Tetrachloroethane	0.0462	0.0050	mg/kg wet	-	& Analyze		72-115	3	20	
		0.0050	0 0			92 05		3 7		
1,1,1-Trichloroethane	0.0477	0.0050	mg/kg wet			95 95	67-131 56-126	4	20	
1,1,2,2-Tetrachloroethane	0.0476	0.0050	mg/kg wet			95 94	56-126 70-133	4	20	
1,1,2-Trichloroethane	0.0469	0.0050	mg/kg wet					4 5	20	
1,1-Dichloroethane	0.0443	0.0050	mg/kg wet			89	74-127		20	
1,1-Dichloroethylene	0.0446	0.0050	mg/kg wet			89	67-149	8	20	
1,1-Dichloropropylene	0.0464	0.0050	mg/kg wet			93	71-130	7	20	
1,2,3-Trichlorobenzene	0.0483	0.0050	mg/kg wet			97	68-130	3	20	
1,2,3-Trichloropropane	0.0475	0.0050	mg/kg wet			95	60-137	5	20	
1,2,4-Trichlorobenzene	0.0490	0.0050	mg/kg wet			98	66-125	3	20	
1,2,4-Trimethylbenzene	0.0486	0.0050	mg/kg wet			97	69-129	5	20	
1,2-Dibromoethane	0.0493	0.0050	mg/kg wet			99	70-132	4	20	
1,2-Dichlorobenzene	0.0485	0.0050	mg/kg wet			97	72-123	4	20	
1,2-Dichloroethane	0.0445	0.0050	mg/kg wet			89	68-128	5	20	
1,2-Dichloropropane	0.0456	0.0050	mg/kg wet			91	73-130	3	20	
1,3,5-Trimethylbenzene	0.0476	0.0050	mg/kg wet			95	69-128	5	20	
1,3-Dichlorobenzene	0.0478	0.0050	mg/kg wet			96	71-120	4	20	
1,3-Dichloropropane	0.0471	0.0050	mg/kg wet			94	75-124	3	20	
1,4-Dichlorobenzene	0.0482	0.0050	mg/kg wet			96	71-123	4	20	
2,2-Dichloropropane	0.0462	0.0050	mg/kg wet			92	50-142	6	20	
2-Chlorotoluene	0.0475	0.0050	mg/kg wet			95	67-124	4	20	
4-Chlorotoluene	0.0479	0.0050	mg/kg wet	0.05000		96	71-126	4	20	
4-Isopropyltoluene	0.0470	0.0050	mg/kg wet	0.05000		94	68-129	6	20	
Acetone	0.0932	0.050	mg/kg wet	0.1000		93	29-198	6	20	
Benzene	0.0452	0.0030	mg/kg wet	0.05000		90	74-127	5	20	
Bromobenzene	0.0466	0.0050	mg/kg wet	0.05000		93	73-125	4	20	
Bromochloromethane	0.0466	0.0050	mg/kg wet	0.05000		93	72-134	4	20	
Bromodichloromethane	0.0506	0.0050	mg/kg wet	0.05000		101	75-122	5	20	
Bromoform	0.0456	0.0050	mg/kg wet	0.05000		91	66-135	3	20	
Bromomethane	0.0494	0.010	mg/kg wet	0.05000		99	20-180	4	20	
Carbon Tetrachloride	0.0522	0.0050	mg/kg wet	0.05000		104	64-143	7	20	
Chlorobenzene	0.0467	0.0050	mg/kg wet	0.05000		93	74-118	5	20	
Chloroethane	0.0458	0.010	mg/kg wet	0.05000		92	33-149	9	20	
Chloroform	0.0449	0.0050	mg/kg wet	0.05000		90	73-127	6	20	
Chloromethane	0.0477	0.0050	mg/kg wet	0.05000		95	45-143	11	20	
cis-1,2-Dichloroethylene	0.0450	0.0050	mg/kg wet	0.05000		90	76-134	5	20	
cis-1,3-Dichloropropylene	0.0518	0.0050	mg/kg wet	0.05000		104	71-125	3	20	
Dibromochloromethane	0.0468	0.0050	mg/kg wet	0.05000		94	73-122	5	20	
Dichlorodifluoromethane	0.0451	0.0050	mg/kg wet	0.05000		90	26-146	10	20	
Ethylbenzene	0.0467	0.0050	mg/kg wet			93	74-128	6	20	
Isopropyl Ether	0.0439	0.0050	mg/kg wet			88	59-159	5	20	
Isopropylbenzene (Cumene)	0.0470	0.0050	mg/kg wet			94	68-126	5	20	
m,p-Xylenes	0.0944	0.010	mg/kg wet			94	75-124	6	20	
Methyl Butyl Ketone (2-Hexanone)	0.0470	0.050	mg/kg wet			94	61-157	6	20	
Methyl Ethyl Ketone (2-Butanone)	0.0417	0.10	mg/kg wet			83	63-149	4	20	
Methyl Isobutyl Ketone	0.0464	0.050	mg/kg wet			93	57-162	7	20	
,	0.0.01	0.000							_•	

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Volatile Organic Compounds by GC/MS - Quality Control

	Reporting		Spike	Source	~ ~ ~ ~	%REC		RPD	
Analyte Res	ult Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7C0297 - 5035									
LCS Dup (P7C0297-BSD1)			Prepared	& Analyze	d: 03/17/1	7			
Methylene Chloride 0.04	22 0.0050	mg/kg wet	0.05000		84	74-129	4	20	
Methyl-tert-Butyl Ether 0.04	79 0.010	mg/kg wet	0.05000		96	70-130	2	20	
Naphthalene 0.04	92 0.010	mg/kg wet	0.05000		98	57-157	3	20	
n-Butylbenzene 0.04	83 0.0050	mg/kg wet	0.05000		97	65-135	6	20	
n-Propylbenzene 0.04	79 0.0050	mg/kg wet	0.05000		96	67-130	5	20	
o-Xylene 0.04	64 0.0050	mg/kg wet	0.05000		93	74-126	5	20	
sec-Butylbenzene 0.04	75 0.0050	mg/kg wet	0.05000		95	66-131	6	20	
Styrene 0.04	79 0.0050	mg/kg wet	0.05000		96	77-121	5	20	
tert-Butylbenzene 0.04	66 0.0050	mg/kg wet	0.05000		93	67-132	6	20	
Tetrachloroethylene 0.04	45 0.0050	mg/kg wet	0.05000		89	68-130	7	20	
Toluene 0.04	54 0.0050	mg/kg wet	0.05000		91	71-129	5	20	
trans-1,2-Dichloroethylene 0.04	51 0.0050	mg/kg wet	0.05000		90	73-132	7	20	
trans-1,3-Dichloropropylene 0.04	56 0.0050	mg/kg wet	0.05000		91	68-123	4	20	
Trichloroethylene 0.04	54 0.0050	mg/kg wet	0.05000		91	75-133	6	20	
Trichlorofluoromethane 0.04	81 0.0050	mg/kg wet	0.05000		96	44-146	13	20	
Vinyl acetate 0.05	29 0.025	mg/kg wet	0.05000		106	85-161	2	20	
Vinyl chloride 0.04	52 0.0050	mg/kg wet	0.05000		90	48-147	11	20	
Xylenes, total 0.1	41 0.015	mg/kg wet	0.1500		94	74-126	6	20	
Surrogate: 4-Bromofluorobenzene 5	1.4	ug/L	50.00		103	70-130			
Surrogate: Dibromofluoromethane 4	3.8	ug/L	50.00		98	84-123			
Surrogate: Toluene-d8 4	9.5	ug/L	50.00		99	76-129			

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 Prism Work Order: 7030286

Time Submitted: 3/16/2017 8:00:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7C0264 - 3546										
Blank (P7C0264-BLK1)			ſ	Prepared	& Analyze	d: 03/16/1	7			
1,2,4-Trichlorobenzene	BRL	0.33	mg/kg wet							
1,2-Dichlorobenzene	BRL	0.33	mg/kg wet							
1,3-Dichlorobenzene	BRL	0.33	mg/kg wet							
1,4-Dichlorobenzene	BRL	0.33	mg/kg wet							
1-Methylnaphthalene	BRL	0.33	mg/kg wet							
2,4,6-Trichlorophenol	BRL	0.33	mg/kg wet							
2,4-Dichlorophenol	BRL	0.33	mg/kg wet							
2,4-Dimethylphenol	BRL	0.33	mg/kg wet							
2,4-Dinitrophenol	BRL	0.33	mg/kg wet							
2,4-Dinitrotoluene	BRL	0.33	mg/kg wet							
2,6-Dinitrotoluene	BRL	0.33	mg/kg wet							
2-Chloronaphthalene	BRL	0.33	mg/kg wet							
2-Chlorophenol	BRL	0.33	mg/kg wet							
2-Methylnaphthalene	BRL	0.33	mg/kg wet							
2-Methylphenol	BRL	0.33	mg/kg wet							
2-Nitrophenol	BRL	0.33	mg/kg wet							
3,3'-Dichlorobenzidine	BRL	0.33	mg/kg wet							
3/4-Methylphenol	BRL	0.33	mg/kg wet							
4,6-Dinitro-2-methylphenol	BRL	0.33	mg/kg wet							
4-Bromophenyl phenyl ether	BRL	0.33	mg/kg wet							
4-Chloro-3-methylphenol	BRL	0.33	mg/kg wet							
4-Chloroaniline	BRL	0.33	mg/kg wet							
4-Chlorophenyl phenyl ether	BRL	0.33	mg/kg wet							
4-Nitrophenol	BRL	0.33	mg/kg wet							
Acenaphthene	BRL	0.33	mg/kg wet							
Acenaphthylene	BRL	0.33	mg/kg wet							
Anthracene	BRL	0.33	mg/kg wet							
Azobenzene	BRL	0.33	mg/kg wet							
Benzo(a)anthracene	BRL	0.33	mg/kg wet							
Benzo(a)pyrene	BRL	0.33	mg/kg wet							
Benzo(b)fluoranthene	BRL	0.33	mg/kg wet							
Benzo(g,h,i)perylene	BRL	0.33	mg/kg wet							
Benzo(k)fluoranthene	BRL	0.33	mg/kg wet							
Benzoic Acid	BRL	0.33	mg/kg wet							
Benzyl alcohol	BRL	0.33	mg/kg wet							
bis(2-Chloroethoxy)methane	BRL	0.33	mg/kg wet							
Bis(2-Chloroethyl)ether	BRL	0.33	mg/kg wet							
Bis(2-chloroisopropyl)ether	BRL	0.33	mg/kg wet							
Bis(2-Ethylhexyl)phthalate	BRL	0.33	mg/kg wet							
Butyl benzyl phthalate	BRL	0.33	mg/kg wet							
Chrysene	BRL	0.33	mg/kg wet							
Dibenzo(a,h)anthracene	BRL	0.33	mg/kg wet							
Dibenzofuran	BRL	0.33	mg/kg wet							
Diethyl phthalate	BRL	0.33	mg/kg wet							
Dimethyl phthalate	BRL	0.33	mg/kg wet							
	BRL	0.33	mg/kg wet							
Di-n-butyl phthalate	DRL	0.33	ing/kg wet							

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 Prism Work Order: 7030286

Time Submitted: 3/16/2017 8:00:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

A	Decult	Reporting	Linita	Spike	Source		%REC		RPD	Netes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7C0264 - 3546										
Blank (P7C0264-BLK1)			I	Prepared	& Analyze	d: 03/16/1	7			
Di-n-octyl phthalate	BRL	0.33	mg/kg wet							
Fluoranthene	BRL	0.33	mg/kg wet							
Fluorene	BRL	0.33	mg/kg wet							
Hexachlorobenzene	BRL	0.33	mg/kg wet							
Hexachlorobutadiene	BRL	0.33	mg/kg wet							
Hexachlorocyclopentadiene	BRL	0.33	mg/kg wet							
Hexachloroethane	BRL	0.33	mg/kg wet							
Indeno(1,2,3-cd)pyrene	BRL	0.33	mg/kg wet							
Isophorone	BRL	0.33	mg/kg wet							
Naphthalene	BRL	0.33	mg/kg wet							
Nitrobenzene	BRL	0.33	mg/kg wet							
N-Nitroso-di-n-propylamine	BRL	0.33	mg/kg wet							
N-Nitrosodiphenylamine	BRL	0.33	mg/kg wet							
Pentachlorophenol	BRL	0.33	mg/kg wet							
Phenanthrene	BRL	0.33	mg/kg wet							
Phenol	BRL	0.33	mg/kg wet							
Pyrene	BRL	0.33	mg/kg wet							
Surrogate: 2,4,6-Tribromophenol	3.08		mg/kg wet	3.333		92	39-132			
Surrogate: 2-Fluorobiphenyl	1.42		mg/kg wet	1.667		85	44-115			
Surrogate: 2-Fluorophenol	3.07		mg/kg wet	3.333		92	35-115			
Surrogate: Nitrobenzene-d5	1.36		mg/kg wet	1.667		81	37-122			
Surrogate: Phenol-d5	2.91		mg/kg wet	3.333		87	34-121			
Surrogate: Terphenyl-d14	1.80		mg/kg wet	1.667		108	54-127			
LCS (P7C0264-BS1)				Prepared	& Analyze	d [.] 03/16/1	7			
1,2,4-Trichlorobenzene	1.14	0.33	mg/kg wet	1.667	<u></u>	68	34-118			
1,2-Dichlorobenzene	1.16	0.33	mg/kg wet	1.667		70	33-117			
1,3-Dichlorobenzene	1.17	0.33	mg/kg wet	1.667		70	30-115			
1,4-Dichlorobenzene	1.13	0.33	mg/kg wet	1.667		68	31-115			
1-Methylnaphthalene	1.27	0.33	mg/kg wet	1.667		76	40-119			
2,4,6-Trichlorophenol	1.45	0.33	mg/kg wet	1.667		87	39-126			
2,4-Dichlorophenol	1.27	0.33	mg/kg wet	1.667		76	40-122			
2,4-Dimethylphenol	1.49	0.33	mg/kg wet	1.667		90	30-127			
2,4-Dinitrophenol	1.76	0.33	mg/kg wet	1.667		106	27-129			
2,4-Dinitrotoluene	1.56	0.33	mg/kg wet	1.667		94	48-126			
2,6-Dinitrotoluene	1.55	0.33	mg/kg wet	1.667		93	46-124			
2-Chloronaphthalene	1.36	0.33	mg/kg wet	1.667		82	41-114			
2-Chlorophenol	1.41	0.33	mg/kg wet	1.667		84	34-121			
2-Methylnaphthalene	1.23	0.33	mg/kg wet	1.667		74	38-121			
2-Methylphenol	1.48	0.33	mg/kg wet	1.667		89	32-122			
2-Nitrophenol	1.48	0.33	mg/kg wet	1.667		73	32-122 36-123			
3,3'-Dichlorobenzidine	1.22	0.33	mg/kg wet	1.667		73	22-123			
	1.32	0.33	mg/kg wet	1.667		79 78	22-121 34-119			
3/4-Methylphenol	1.30					78 90	34-119 29-132			
4,6-Dinitro-2-methylphenol		0.33	mg/kg wet	1.667						
4-Bromophenyl phenyl ether	1.52	0.33	mg/kg wet	1.667		91 82	46-124			
4-Chloro-3-methylphenol	1.38	0.33	mg/kg wet	1.667		83	45-122			
4-Chloroaniline	1.07	0.33	mg/kg wet	1.667		64	17-106			

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 3/20/17

Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

• • •		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7C0264 - 3546										
LCS (P7C0264-BS1)			F	Prepared	& Analyze	d: 03/16/1	7			
4-Chlorophenyl phenyl ether	1.43	0.33	mg/kg wet	1.667		86	45-121			
4-Nitrophenol	1.50	0.33	mg/kg wet	1.667		90	30-132			
Acenaphthene	1.47	0.33	mg/kg wet	1.667		88	40-123			
Acenaphthylene	1.41	0.33	mg/kg wet	1.667		84	32-132			
Anthracene	1.53	0.33	mg/kg wet	1.667		92	47-123			
Azobenzene	1.53	0.33	mg/kg wet	1.667		92	39-125			
Benzo(a)anthracene	1.54	0.33	mg/kg wet	1.667		92	49-126			
Benzo(a)pyrene	1.53	0.33	mg/kg wet	1.667		92	45-129			
Benzo(b)fluoranthene	1.55	0.33	mg/kg wet	1.667		93	45-132			
Benzo(g,h,i)perylene	1.51	0.33	mg/kg wet	1.667		90	43-134			
Benzo(k)fluoranthene	1.53	0.33	mg/kg wet	1.667		92	47-132			
Benzoic Acid	0.936	0.33	mg/kg wet	1.667		56	10-83			
Benzyl alcohol	1.34	0.33	mg/kg wet	1.667		81	29-122			
bis(2-Chloroethoxy)methane	1.21	0.33	mg/kg wet	1.667		73	36-121			
Bis(2-Chloroethyl)ether	3.02	0.33	mg/kg wet	1.667		181	31-120			L
Bis(2-chloroisopropyl)ether	1.19	0.33	mg/kg wet	1.667		72	33-131			
Bis(2-Ethylhexyl)phthalate	1.53	0.33	mg/kg wet	1.667		92	51-133			
Butyl benzyl phthalate	1.55	0.33	mg/kg wet	1.667		93	48-132			
Chrysene	1.72	0.33	mg/kg wet	1.667		103	50-124			
Dibenzo(a,h)anthracene	1.36	0.33	mg/kg wet	1.667		82	45-134			
Dibenzofuran	1.47	0.33	mg/kg wet	1.667		88	44-120			
Diethyl phthalate	1.51	0.33	mg/kg wet	1.667		90	50-124			
Dimethyl phthalate	1.53	0.33	mg/kg wet	1.667		92	48-124			
Di-n-butyl phthalate	1.48	0.33	mg/kg wet	1.667		89	51-128			
Di-n-octyl phthalate	1.54	0.33	mg/kg wet	1.667		93	45-140			
Fluoranthene	1.48	0.33	mg/kg wet	1.667		89	50-127			
Fluorene	1.45	0.33	mg/kg wet	1.667		87	43-125			
Hexachlorobenzene	1.48	0.33	mg/kg wet	1.667		89	45-122			
Hexachlorobutadiene	1.25	0.33	mg/kg wet	1.667		75	32-123			
Hexachlorocyclopentadiene	1.04	0.33	mg/kg wet	1.667		63	32-117			
Hexachloroethane	1.16	0.33	mg/kg wet	1.667		69	28-117			
Indeno(1,2,3-cd)pyrene	1.74	0.33	mg/kg wet	1.667		104	45-133			
Isophorone	1.30	0.33	mg/kg wet	1.667		78	30-122			
Naphthalene	1.18	0.33	mg/kg wet	1.667		71	35-123			
Nitrobenzene	1.22	0.33	mg/kg wet	1.667		73	34-122			
N-Nitroso-di-n-propylamine	1.28	0.33	mg/kg wet	1.667		77	36-120			
N-Nitrosodiphenylamine	1.79	0.33	mg/kg wet	1.667		107	38-127			
Pentachlorophenol	1.78	0.33	mg/kg wet	1.667		107	25-133			
Phenanthrene	1.50	0.33	mg/kg wet	1.667		90	50-121			
Phenol	1.42	0.33	mg/kg wet	1.667		85	34-121			
Pyrene	1.50	0.33	mg/kg wet	1.667		90	47-127			
		0.00								
Surrogate: 2,4,6-Tribromophenol	3.05		mg/kg wet	3.333		91 86	39-132			
Surrogate: 2-Fluorobiphenyl	1.43		mg/kg wet	1.667		86 87	44-115 25 115			
Surrogate: 2-Fluorophenol	2.89		mg/kg wet	3.333		87 71	35-115			
Surrogate: Nitrobenzene-d5	1.19		mg/kg wet	1.667		71 82	37-122			
Surrogate: Phenol-d5	2.77		mg/kg wet	3.333		83	34-121			

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7C0264 - 3546										
LCS (P7C0264-BS1)				Prepared	& Analyze	d: 03/16/1	7			
Surrogate: Terphenyl-d14	1.71		mg/kg wet	1.667	,	103	54-127			
LCS Dup (P7C0264-BSD1)				Prepared	& Analyze	d: 03/16/1	7			
1,2,4-Trichlorobenzene	1.13	0.33	mg/kg wet	1.667	<u> </u>	68	34-118	0.6	20	
1.2-Dichlorobenzene	1.18	0.33	mg/kg wet	1.667		71	33-117	2	20	
1,3-Dichlorobenzene	1.17	0.33	mg/kg wet	1.667		70	30-115	0.6	20	
1,4-Dichlorobenzene	1.18	0.33	mg/kg wet	1.667		71	31-115	4	20	
1-Methylnaphthalene	1.25	0.33	mg/kg wet	1.667		75	40-119	2	20	
2,4,6-Trichlorophenol	1.51	0.33	mg/kg wet	1.667		91	39-126	4	20	
2,4-Dichlorophenol	1.24	0.33	mg/kg wet	1.667		74	40-122	3	20	
2,4-Dimethylphenol	1.48	0.33	mg/kg wet	1.667		89	30-127	1	20	
2,4-Dinitrophenol	1.78	0.33	mg/kg wet	1.667		107	27-129	1	20	
2,4-Dinitrotoluene	1.57	0.33	mg/kg wet	1.667		94	48-126	0.3	20	
2,6-Dinitrotoluene	1.55	0.33	mg/kg wet	1.667		93	46-124	0.06	20	
2-Chloronaphthalene	1.37	0.33	mg/kg wet	1.667		82	41-114	0.7	20	
2-Chlorophenol	1.40	0.33	mg/kg wet	1.667		84	34-121	0.7	20	
2-Methylnaphthalene	1.40	0.33	mg/kg wet	1.667		73	38-121	2	20	
	1.44	0.33	mg/kg wet	1.667		86	32-122	3	20	
2-Methylphenol	1.44					76	32-122 36-123	4		
2-Nitrophenol		0.33	mg/kg wet	1.667					20	
3,3'-Dichlorobenzidine	1.32	0.33	mg/kg wet mg/kg wet	1.667		79 77	22-121	0	20	
3/4-Methylphenol	1.29	0.33	0 0	1.667		77	34-119	0.6	20	
4,6-Dinitro-2-methylphenol	1.49	0.33	mg/kg wet	1.667		89	29-132	1	20	
4-Bromophenyl phenyl ether	1.48	0.33	mg/kg wet	1.667		89	46-124	3	20	
4-Chloro-3-methylphenol	1.38	0.33	mg/kg wet	1.667		83	45-122	0.3	20	
4-Chloroaniline	1.04	0.33	mg/kg wet	1.667		62	17-106	3	20	
4-Chlorophenyl phenyl ether	1.45	0.33	mg/kg wet	1.667		87	45-121	1	20	
4-Nitrophenol	1.56	0.33	mg/kg wet	1.667		93	30-132	4	20	
Acenaphthene	1.49	0.33	mg/kg wet	1.667		89	40-123	1	20	
Acenaphthylene	1.42	0.33	mg/kg wet	1.667		85	32-132	1	20	
Anthracene	1.55	0.33	mg/kg wet	1.667		93	47-123	1	20	
Azobenzene	1.53	0.33	mg/kg wet	1.667		92	39-125	0.04	20	
Benzo(a)anthracene	1.51	0.33	mg/kg wet	1.667		90	49-126	2	20	
Benzo(a)pyrene	1.51	0.33	mg/kg wet	1.667		91	45-129	1	20	
Benzo(b)fluoranthene	1.53	0.33	mg/kg wet	1.667		92	45-132	1	20	
Benzo(g,h,i)perylene	1.50	0.33	mg/kg wet	1.667		90	43-134	0.7	20	
Benzo(k)fluoranthene	1.51	0.33	mg/kg wet	1.667		90	47-132	1	20	
Benzoic Acid	0.884	0.33	mg/kg wet	1.667		53	10-83	6	20	
Benzyl alcohol	1.37	0.33	mg/kg wet	1.667		82	29-122	2	20	
bis(2-Chloroethoxy)methane	1.20	0.33	mg/kg wet	1.667		72	36-121	1	20	
Bis(2-Chloroethyl)ether	1.39	0.33	mg/kg wet	1.667		83	31-120	74	20	D
Bis(2-chloroisopropyl)ether	1.20	0.33	mg/kg wet	1.667		72	33-131	0.1	20	
Bis(2-Ethylhexyl)phthalate	1.53	0.33	mg/kg wet	1.667		92	51-133	0.1	20	
Butyl benzyl phthalate	1.50	0.33	mg/kg wet	1.667		90	48-132	3	20	
Chrysene	1.69	0.33	mg/kg wet	1.667		101	50-124	2	20	
Dibenzo(a,h)anthracene	1.06	0.33	mg/kg wet	1.667		64	45-134	25	20	D
Dibenzofuran	1.48	0.33	mg/kg wet	1.667		89	44-120	0.9	20	
Diethyl phthalate	1.55	0.33	mg/kg wet	1.667		93	50-124	3	20	

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

		Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7C0264 - 3546									
.CS Dup (P7C0264-BSD1)		I	Prepared	& Analyze	d: 03/16/1	7			
Dimethyl phthalate 1.54	0.33	mg/kg wet	1.667		93	48-124	0.7	20	
Di-n-butyl phthalate 1.51	0.33	mg/kg wet	1.667		90	51-128	2	20	
Di-n-octyl phthalate 1.53	0.33	mg/kg wet	1.667		92	45-140	0.7	20	
luoranthene 1.50	0.33	mg/kg wet	1.667		90	50-127	2	20	
luorene 1.48	0.33	mg/kg wet	1.667		89	43-125	2	20	
lexachlorobenzene 1.47	0.33	mg/kg wet	1.667		88	45-122	0.6	20	
lexachlorobutadiene 1.25	0.33	mg/kg wet	1.667		75	32-123	0.7	20	
lexachlorocyclopentadiene 1.05	0.33	mg/kg wet	1.667		63	32-117	0.8	20	
lexachloroethane 1.13	0.33	mg/kg wet	1.667		68	28-117	2	20	
ndeno(1,2,3-cd)pyrene 1.67	0.33	mg/kg wet	1.667		100	45-133	4	20	
sophorone 1.27	0.33	mg/kg wet	1.667		76	30-122	2	20	
laphthalene 1.17	0.33	mg/kg wet	1.667		70	35-123	0.4	20	
litrobenzene 1.23	0.33	mg/kg wet	1.667		74	34-122	0.6	20	
I-Nitroso-di-n-propylamine 1.26	0.33	mg/kg wet	1.667		76	36-120	1	20	
I-Nitrosodiphenylamine 1.84	0.33	mg/kg wet	1.667		110	38-127	3	20	
Pentachlorophenol 1.83	0.33	mg/kg wet	1.667		110	25-133	3	20	
Phenanthrene 1.52	0.33	mg/kg wet	1.667		91	50-121	2	20	
Phenol 1.41	0.33	mg/kg wet	1.667		85	34-121	0.2	20	
Pyrene 1.51	0.33	mg/kg wet	1.667		91	47-127	0.6	20	
Surrogate: 2,4,6-Tribromophenol 3.10		mg/kg wet	3.333		93	39-132			
Surrogate: 2-Fluorobiphenyl 1.41		mg/kg wet	1.667		85	44-115			
Surrogate: 2-Fluorophenol 2.80		mg/kg wet	3.333		84	35-115			
Surrogate: Nitrobenzene-d5 1.16		mg/kg wet	1.667		70	37-122			
Surrogate: Phenol-d5 2.70		mg/kg wet	3.333		81	34-121			
Surrogate: Terphenyl-d14 1.69		mg/kg wet	1.667		101	54-127			

Level II QC Report 3/20/17

Hart & Hickman (Raleigh) Attn: Joe Starr 3334 Hillsborough St. Raleigh, NC 27607

Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Volatile Petroleum Hydrocarbons by GC/PID/FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7C0299 - MADEP VPH (S)										
Blank (P7C0299-BLK1)			F	Prepared	& Analyze	d: 03/17/1	7			
C5-C8 Aliphatics	BRL	5.0	mg/kg wet							
C9-C12 Aliphatics	BRL	5.0	mg/kg wet							
C9-C10 Aromatics	BRL	5.0	mg/kg wet							
Surrogate: 2,5-Dibromotoluene (PID)	9.94		mg/kg wet	10.67		93	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	9.76		mg/kg wet	10.67		91	70-130			
LCS (P7C0299-BS1)			F	Prepared	& Analyze	d: 03/17/1	7			
C5-C8 Aliphatics	36.4	5.0	mg/kg wet	32.00		114	70-130			
C9-C10 Aromatics	10.6	5.0	mg/kg wet	10.67		99	70-130			
C9-C12 Aliphatic	33.5	5.0	mg/kg wet	32.00		105	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	9.98		mg/kg wet	10.67		94	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	9.73		mg/kg wet	10.67		91	70-130			
LCS Dup (P7C0299-BSD1)			F	Prepared	& Analyze	d: 03/17/1	7			
C5-C8 Aliphatics	37.1	5.0	mg/kg wet	32.00		116	70-130	2	50	
C9-C10 Aromatics	10.7	5.0	mg/kg wet	10.67		101	70-130	1	50	
C9-C12 Aliphatic	33.7	5.0	mg/kg wet	32.00		105	70-130	0.8	50	
Surrogate: 2,5-Dibromotoluene (PID)	10.1		mg/kg wet	10.67		95	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	9.88		mg/kg wet	10.67		93	70-130			

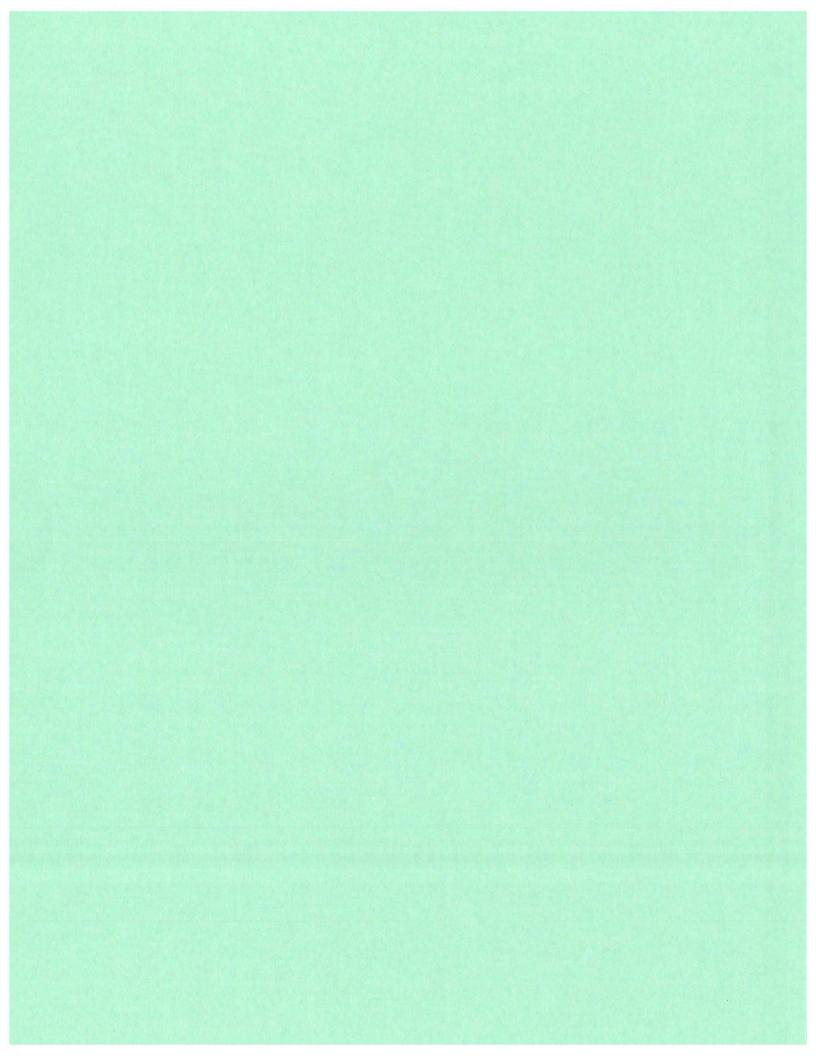
Project: American Legion - Chapel Hill TCLT.003 Project No: TCLT.003 3/20/17

Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

Extractable Petroleum Hydrocarbons by GC/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7C0256 - 3546										
Blank (P7C0256-BLK1)			F	Prepared:	03/15/17	Analyzed	: 03/16/17			
C9-C18 Aliphatics	BRL	25	mg/kg wet							
C19-C36 Aliphatics	BRL	25	mg/kg wet							
C11-C22 Aromatics	BRL	10	mg/kg wet							
Surrogate: 1-Chlorooctadecane	1.58		mg/kg wet	2.000		79	40-140			
Surrogate: o-Terphenyl	1.72		mg/kg wet	2.000		86	40-140			
Surrogate: 2-Fluorobiphenyl	3.39		mg/kg wet	4.000		85	40-140			
Surrogate: 2-Bromonaphthalene	4.14		mg/kg wet	4.000		103	40-140			
LCS (P7C0256-BS1)			F	Prepared:	03/15/17	Analyzed	: 03/16/17			
C9-C18 Aliphatics	30.6	25	mg/kg wet	60.00		51	40-140			
C19-C36 Aliphatics	55.3	25	mg/kg wet	80.00		69	40-140			
C11-C22 Aromatics	147	10	mg/kg wet	170.0		86	40-140			
Surrogate: 1-Chlorooctadecane	1.60		mg/kg wet	2.000		80	40-140			
Surrogate: o-Terphenyl	1.73		mg/kg wet	2.000		86	40-140			
Surrogate: 2-Fluorobiphenyl	3.71		mg/kg wet	4.000		93	40-140			
Surrogate: 2-Bromonaphthalene	4.38		mg/kg wet	4.000		109	40-140			
LCS Dup (P7C0256-BSD1)			F	Prepared:	03/15/17	Analyzed	: 03/16/17			
C9-C18 Aliphatics	31.8	25	mg/kg wet	60.00		53	40-140	4	50	
C19-C36 Aliphatics	54.8	25	mg/kg wet	80.00		69	40-140	0.9	50	
C11-C22 Aromatics	138	10	mg/kg wet	170.0		81	40-140	6	50	
Surrogate: 1-Chlorooctadecane	1.63		mg/kg wet	2.000		82	40-140			
Surrogate: o-Terphenyl	1.66		mg/kg wet	2.000		83	40-140			
Surrogate: 2-Fluorobiphenyl	3.53		mg/kg wet	4.000		88	40-140			
Surrogate: 2-Bromonaphthalene	4.09		mg/kg wet	4.000		102	40-140			

Hart & Hickman (Raleigh)Project: American Legion - Chapel HillAttn: Joe StarrTCLT.0033334 Hillsborough St.Project No: TCLT.003Raleigh, NC 27607Project No: TCLT.003


Prism Work Order: 7030286 Time Submitted: 3/16/2017 8:00:00AM

General Chemistry Parameters - Quality Control

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7C0309 - S	olids, Dry Weight										
Duplicate (P7C0309-	DUP1)	So	urce: 7030286	7030286-01 Prep		d & Analyze	d: 03/17/1	7			
% Solids		79.0	0.100	% by Weig	ht	78.0			1	20	
			Sample	Extracti	on Data						
Prep Method: 3546											
Lab Number	Batch	Initial		Final		Date/Time					
7030286-01	P7C0256	10.05 g		2 ml	_ (03/16/17 11:	30				
Prep Method: Solids, D	ry Weight										
Lab Number	Batch	Initial		Final		Date/Time					
7030286-01	P7C0309	30 g		30 g	(03/17/17 16:0	00				
Prep Method: 3546											
Lab Number	Batch	Initial		Final		Date/Time					
7030286-01	P7C0264	30.07 g		1 ml	_ (03/16/17 11:3	30				
Prep Method: 5035											
Lab Number	Batch	Initial		Final		Date/Time					
7030286-01	P7C0297	6.11 g		5 ml		03/17/17 9:5	52				
Prep Method: MADEP V	/PH (S)										
Lab Number	Batch	Initial		Final		Date/Time					
7030286-01	P7C0299	28.45 g		16 ml	_ (03/17/17 14:4	47				

NPDES: UST: GROUNDWATER: DRINKING WATER: SO ID NC ID SC ID NC ID SC <th>TE: ALL SAMPLE COOLERS SHOULD BI MPLES ARE NOT ACCEPTED AND VERI Hand-delivered</th> <th>Reinquished By: (Sgnature)</th> <th>Reininguisiped By: (Signature)</th> <th></th> <th>Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialize</th> <th>Sampler's Signature</th> <th></th> <th></th> <th>Vienan 1:05 9461 61-51-2 5-815</th> <th>SAMPLE DESCRIPTION COLLECTED MILITARY WATER OR *TYPE HOURS SLUDGE) SEE BELOW</th> <th>TIME MATRIX</th> <th>2-424Fax (Yes) (No): 2-424Fax (Yes) (No): Star (Oharthikman com) Excel × Other Excel × Other :. Americu n Legion :. Americu n Legion :. Americu n Legion :. Americu n Legion</th> <th>Address: Address: <td< th=""></td<></th>	TE: ALL SAMPLE COOLERS SHOULD BI MPLES ARE NOT ACCEPTED AND VERI Hand-delivered	Reinquished By: (Sgnature)	Reininguisiped By: (Signature)		Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialize	Sampler's Signature			Vienan 1:05 9461 61-51-2 5-815	SAMPLE DESCRIPTION COLLECTED MILITARY WATER OR *TYPE HOURS SLUDGE) SEE BELOW	TIME MATRIX	2-424Fax (Yes) (No): 2-424Fax (Yes) (No): Star (Oharthikman com) Excel × Other Excel × Other :. Americu n Legion :. Americu n Legion :. Americu n Legion :. Americu n Legion	Address: Address: <td< th=""></td<>
	ECEIVED AT THE LABORA	Received For Prism Laboratories By:			o proceed with the an or any changes after a	Vame)			4 8	NO.	SAMPLE CONTAINER	Purchase Order No./Billing Reference Requested Due Date I 1 Day I Days I "Working Days" I 6-9 Days I Standard Samples received after 14:00 will be processed Turnaround time is based on business days, ep (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY PRISM LABORATORIES, INC	PAGE OF QUOTE # TO ENSURE P Project Name: <u>Town of Chape</u> Short Hold Analysis: (Yes) (No) *Please ATTACH any project specific r provisions and/or QC Requirements Invoice To: <u>allow</u> <u>reference</u> Address: <u>2923</u> <u>5</u> <u>Tryc</u>
LID WASTE: RCRA: CERCLA LANDFILL OTHER: VC D SC D NC D SC D NC D SC D NC D SC TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space) D D D D			1/15		alyses as requested above. Any ch nalyses have been initialized.	ey Ollison Affiliation			150 meretan	SIZE TIVES	PRESERVA-	TCI+.CC 3 Days □ 4 Days □ 10 days □ Presh Wi 4 next business day. ccluding weekends ar REGARDING SERVICE 7. TO CLIENT)	PROPER BILLING: // /// - Am UST Projec reporting (QC LI
Analysis (Zero Head Space)	문학	Co80 21/9//E	W17 0640	ES: 1111/S/1	anges must be	Hort			+ +	Con To Con	জ 📈		
TERMS & CONDITIONS ORIGINAL	SEE REVERSE FOR			Additional Comments:		PRESS DOWN FIRMLY - 3 COPIES			0(REMAKAS ID NO.		ENT/SAMPLING	Samples INTACT upon arrival?

C. N. W. S. S. S.

Full-Service Analytical & Environmental Solutions

NC Certification No. 402 NC Drinking Water Cert No. 37735 SC Certification No. 99012 **Case Narrative**

05/26/2017

Hart & Hickman (Raleigh) Joe Starr 3334 Hillsborough St. Raleigh, NC 27607 Project: American Legion - Chapel Hill TCH.003 Project No.: TCLT.003 Lab Submittal Date: 05/18/2017 Prism Work Order: 7050329

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

otti A. J

Robbi A. Jones President/Project Manager

Kori a. J

Reviewed By Robbi A. Jones President/Project Manager

Data Qualifiers Key Reference:

- CCV CCV result is above the control limits. Analyte not detected in the sample. No further action taken.
- D RPD value outside of the control limits.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- L Parameter reported with possible low bias. LCS recovery below the QC limit.
- LCS recovery outside of the QC limits. LCSD recovery within the limits. No further action taken.
- BRL Below Reporting Limit
- MDL Method Detection Limit
- RPD Relative Percent Difference
- * Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

Sample Receipt Summary

05/26/2017

Prism Work Order: 7050329

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
SB-6	7050329-01	Solid	05/16/17	05/18/17
SB-7	7050329-02	Solid	05/16/17	05/18/17
SB-8	7050329-03	Solid	05/16/17	05/18/17
TMW-1	7050329-04	Water	05/16/17	05/18/17

Samples were received in good condition at 3.0 degrees C unless otherwise noted.

Summary of Detections

Prism Work Order: 7050329

05/26/2017

Prism ID	Client ID	Parameter	Method	Result	Units
7050329-01	SB-6	Diesel Range Organics	*8015C	9.9	mg/kg dry
7050329-02	SB-7	Diesel Range Organics	*8015C	14	mg/kg dry
7050329-04	TMW-1	Unknown 1	625	25	ug/L

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Hart & Hickman (Raleigh) Attn: Joe Starr 3334 Hillsborough St. Raleigh, NC 27607 Project: American Legion - Chapel Hill TCH.003 Project No.: TCLT.003 Sample Matrix: Solid Client Sample ID: SB-6 Prism Sample ID: 7050329-01 Prism Work Order: 7050329 Time Collected: 05/16/17 10:10 Time Submitted: 05/18/17 08:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	9.9	mg/kg dry	8.2	3.2	1	*8015C	5/18/17 21:38	ZRC	P7E0349
			Surrogate			Recov	very	Control I	Limits
			o-Terphenyl			92	%	49-124	
General Chemistry Parameters									
% Solids	83.2	% by Weight	0.100	0.100	1	*SM2540 G	5/18/17 16:45	JLB	P7E0377

Hart & Hickman (Raleigh) Attn: Joe Starr 3334 Hillsborough St. Raleigh, NC 27607 Project: American Legion - Chapel Hill TCH.003 Project No.: TCLT.003 Sample Matrix: Solid Client Sample ID: SB-7 Prism Sample ID: 7050329-02 Prism Work Order: 7050329 Time Collected: 05/16/17 10:35 Time Submitted: 05/18/17 08:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	14	mg/kg dry	8.6	3.4	1	*8015C	5/18/17 22:15	ZRC	P7E0349
			Surrogate			Recov	very	Control I	Limits
			o-Terphenyl			98	%	49-124	
General Chemistry Parameters									
% Solids	80.2	% by Weight	0.100	0.100	1	*SM2540 G	5/18/17 16:45	JLB	P7E0377

Hart & Hickman (Raleigh) Attn: Joe Starr 3334 Hillsborough St. Raleigh, NC 27607 Project: American Legion - Chapel Hill TCH.003 Project No.: TCLT.003 Sample Matrix: Solid Client Sample ID: SB-8 Prism Sample ID: 7050329-03 Prism Work Order: 7050329 Time Collected: 05/16/17 13:10 Time Submitted: 05/18/17 08:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	BRL	mg/kg dry	8.6	3.4	1	*8015C	5/18/17 22:52	2 ZRC	P7E0349
			Surrogate			Recov	very	Control	Limits
			o-Terphenyl			92	2 %	49-124	
General Chemistry Parameters									
% Solids	79.6	% by Weight	0.100	0.100	1	*SM2540 G	5/18/17 16:45	5 JLB	P7E0377

Hart & Hickman (Raleigh) Attn: Joe Starr 3334 Hillsborough St. Raleigh, NC 27607

Project: American Legion - Chapel Hill TCH.003 Project No.: TCLT.003 Sample Matrix: Water Client Sample ID: TMW-1 Prism Sample ID: 7050329-04 Prism Work Order: 7050329 Time Collected: 05/16/17 15:00 Time Submitted: 05/18/17 08:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Extractable Petroleum Hydroca	arbons by GC/FID								
C9-C18 Aliphatics	BRL	ug/L	350	22	1	MADEP EPH	5/24/17 17:17	ZRC	P7E0441
C19-C36 Aliphatics	BRL	ug/L	500	63	1	MADEP EPH	5/24/17 17:17	ZRC	P7E0441
C11-C22 Aromatics	BRL	ug/L	100	55	1	MADEP EPH	5/24/17 17:17	ZRC	P7E0441
			Surrogate			Recove	ery	Control L	imits
			1-Chlorooct	adecane		63	%	40-140	
			o-Terphenyl			75	%	40-140	
			2-Fluorobipl	nenyl		83	%	40-140	
			2-Bromonap	ohthalene		114	%	40-140	
Semivolatile Organic Compour	nds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	1.5	1	625	5/23/17 17:56	JMV	P7E0398
1,2-Dichlorobenzene	BRL	ug/L	10	1.4	1	625	5/23/17 17:56	JMV	P7E0398
1,3-Dichlorobenzene	BRL	ug/L	10	1.3	1	625	5/23/17 17:56	JMV	P7E0398
1,4-Dichlorobenzene	BRL	ug/L	10	1.4	1	625	5/23/17 17:56	JMV	P7E0398
1-Methylnaphthalene	BRL	ug/L	10	2.1	1	625	5/23/17 17:56	JMV	P7E0398
2,4,6-Trichlorophenol	BRL	ug/L	10	1.9	1	625	5/23/17 17:56	JMV	P7E0398
2,4-Dichlorophenol	BRL	ug/L	10	1.6	1	625	5/23/17 17:56	JMV	P7E0398
2,4-Dimethylphenol	BRL	ug/L	10	2.1	1	625	5/23/17 17:56	JMV	P7E0398
2,4-Dinitrophenol	BRL	ug/L	10	1.2	1	625	5/23/17 17:56	JMV	P7E0398
2,4-Dinitrotoluene	BRL	ug/L	10	3.0	1	625	5/23/17 17:56	JMV	P7E0398
2,6-Dinitrotoluene	BRL	ug/L	10	3.0	1	625	5/23/17 17:56	JMV	P7E0398
2-Chloronaphthalene	BRL	ug/L	10	2.4	1	625	5/23/17 17:56	JMV	P7E0398
2-Chlorophenol	BRL	ug/L	10	1.1	1	625	5/23/17 17:56	JMV	P7E0398
2-Methylnaphthalene	BRL	ug/L	10	1.9	1	625	5/23/17 17:56	JMV	P7E0398
2-Nitrophenol	BRL	ug/L	10	1.4	1	625	5/23/17 17:56	JMV	P7E0398
3,3'-Dichlorobenzidine	BRL	ug/L	10	2.8	1	625	5/23/17 17:56	JMV	P7E0398
3/4-Methylphenol	BRL	ug/L	10	1.2	1	625	5/23/17 17:56	JMV	P7E0398
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	1.9	1	625	5/23/17 17:56	JMV	P7E0398
4-Bromophenyl phenyl ether	BRL	ug/L	10	3.2	1	625	5/23/17 17:56	JMV	P7E0398
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	625	5/23/17 17:56	JMV	P7E0398
4-Chloroaniline	BRL	ug/L	10	1.7	1	625	5/23/17 17:56	JMV	P7E0398
4-Chlorophenyl phenyl ether	BRL	ug/L	10	2.2	1	625	5/23/17 17:56	JMV	P7E0398
4-Nitrophenol	BRL	ug/L	51	1.7	1	625	5/23/17 17:56	JMV	P7E0398
Acenaphthene	BRL	ug/L	10	2.3	1	625	5/23/17 17:56	JMV	P7E0398
Acenaphthylene	BRL	ug/L	10	2.3	1	625	5/23/17 17:56	JMV	P7E0398
Anthracene	BRL	ug/L	10	3.2	1	625	5/23/17 17:56	JMV	P7E0398
Benzidine	BRL CCV	ug/L	100	14	1	625	5/23/17 17:56	JMV	P7E0398
Benzo(a)anthracene	BRL	ug/L	10	3.1	1	625	5/23/17 17:56	JMV	P7E0398
Benzo(a)pyrene	BRL	ug/L	10	3.7	1	625	5/23/17 17:56	JMV	P7E0398
Benzo(b)fluoranthene	BRL	ug/L	10	3.6	1	625	5/23/17 17:56	JMV	P7E0398
Benzo(g,h,i)perylene	BRL	ug/L	10	3.5	1	625	5/23/17 17:56	JMV	P7E0398
Benzo(k)fluoranthene	BRL	ug/L	10	3.9	1	625	5/23/17 17:56		P7E0398
Benzoic Acid	BRL	ug/L	100	0.75	1	625	5/23/17 17:56		P7E0398

Project: American Legion - Chapel Hill TCH.003 Project No.: TCLT.003 Sample Matrix: Water Laboratory Report 05/26/2017

Client Sample ID: TMW-1 Prism Sample ID: 7050329-04 Prism Work Order: 7050329 Time Collected: 05/16/17 15:00 Time Submitted: 05/18/17 08:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst	Batch ID
Benzyl alcohol	BRL	ug/L	10	1.6	1	625	5/23/17 17:56	JMV	P7E0398
bis(2-Chloroethoxy)methane	BRL	ug/L	10	1.8	1	625	5/23/17 17:56	JMV	P7E0398
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.6	1	625	5/23/17 17:56	JMV	P7E0398
Bis(2-chloroisopropyl)ether	BRL CCV	ug/L	10	1.7	1	625	5/23/17 17:56	JMV	P7E0398
Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	3.2	1	625	5/23/17 17:56	JMV	P7E0398
Butyl benzyl phthalate	BRL	ug/L	10	2.6	1	625	5/23/17 17:56	JMV	P7E0398
Chrysene	BRL	ug/L	10	3.4	1	625	5/23/17 17:56	JMV	P7E0398
Dibenzo(a,h)anthracene	BRL	ug/L	10	3.4	1	625	5/23/17 17:56	JMV	P7E0398
Dibenzofuran	BRL	ug/L	10	2.3	1	625	5/23/17 17:56	JMV	P7E0398
Diethyl phthalate	BRL	ug/L	10	2.3	1	625	5/23/17 17:56	JMV	P7E0398
Dimethyl phthalate	BRL	ug/L	10	1.6	1	625	5/23/17 17:56	JMV	P7E0398
Di-n-butyl phthalate	BRL	ug/L	10	3.4	1	625	5/23/17 17:56	JMV	P7E0398
Di-n-octyl phthalate	BRL CCV	ug/L	10	3.6	1	625	5/23/17 17:56	JMV	P7E0398
Fluoranthene	BRL	ug/L	10	3.5	1	625	5/23/17 17:56	JMV	P7E0398
Fluorene	BRL	ug/L	10	2.8	1	625	5/23/17 17:56	JMV	P7E0398
Hexachlorobenzene	BRL	ug/L	10	2.5	1	625	5/23/17 17:56	JMV	P7E0398
Hexachlorobutadiene	BRL	ug/L	10	2.1	1	625	5/23/17 17:56	JMV	P7E0398
Hexachlorocyclopentadiene	BRL	ug/L	10	1.7	1	625	5/23/17 17:56	JMV	P7E0398
Hexachloroethane	BRL CCV	ug/L	10	1.5	1	625	5/23/17 17:56	JMV	P7E0398
Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	3.1	1	625	5/23/17 17:56	JMV	P7E0398
Isophorone	BRL	ug/L	10	2.2	1	625	5/23/17 17:56	JMV	P7E0398
Naphthalene	BRL	ug/L	10	2.1	1	625	5/23/17 17:56	JMV	P7E0398
Nitrobenzene	BRL	ug/L	10	1.4	1	625	5/23/17 17:56	JMV	P7E0398
N-Nitrosodimethylamine	BRL	ug/L	10	0.84	1	625	5/23/17 17:56	JMV	P7E0398
N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.1	1	625	5/23/17 17:56	JMV	P7E0398
N-Nitrosodiphenylamine	BRL	ug/L	10	2.9	1	625	5/23/17 17:56	JMV	P7E0398
Pentachlorophenol	BRL	ug/L	10	2.1	1	625	5/23/17 17:56	JMV	P7E0398
Phenanthrene	BRL	ug/L	10	3.2	1	625	5/23/17 17:56	JMV	P7E0398
Phenol	BRL	ug/L	10	0.48	1	625	5/23/17 17:56	JMV	P7E0398
Pyrene	BRL	ug/L	10	3.5	1	625	5/23/17 17:56	JMV	P7E0398
TIC: Unknown 1	25	ug/L			1	625	5/23/17 17:56	JMV	P7E0398
			Surrogate			Recov	/ery	Control I	Limits
			2,4,6-Tribro	mophenol		31	1 %	31-144	
			2-Fluorobip	henyl		72	2 %	49-118	
			2-Fluorophe	enol		37	7 %	22-84	
			Nitrobenzer	ne-d5		75	5 %	43-123	
			Phenol-d5			30	0%	10-63	
			Terphenyl-d	14		11	2 %	49-151	
Volatile Organic 602 Compounds	s by GC/MS								
Benzene	BRL	ug/L	0.50	0.048	1	SM6200 B	5/22/17 23:24	KDM	P7E0409
Chlorobenzene	BRL	ug/L	0.50	0.062	1	SM6200 B	5/22/17 23:24	KDM	P7E0409
Ethylbenzene	BRL	ug/L	1.0	0.061	1	SM6200 B	5/22/17 23:24	KDM	P7E0409
Isopropyl Ether	BRL	ug/L	5.0	0.050	1	SM6200 B	5/22/17 23:24	KDM	P7E0409

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Hart & Hickman (Raleigh) Attn: Joe Starr 3334 Hillsborough St. Raleigh, NC 27607 Project: American Legion - Chapel Hill TCH.003 Project No.: TCLT.003 Sample Matrix: Water Client Sample ID: TMW-1 Prism Sample ID: 7050329-04 Prism Work Order: 7050329 Time Collected: 05/16/17 15:00 Time Submitted: 05/18/17 08:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
m,p-Xylenes	BRL	ug/L	2.0	0.12	1	SM6200 B	5/22/17 23:	24 KDM	P7E0409
Methyl-tert-Butyl Ether	BRL	ug/L	5.0	0.042	1	SM6200 B	5/22/17 23:	24 KDM	P7E0409
Naphthalene	BRL	ug/L	5.0	0.19	1	SM6200 B	5/22/17 23:	24 KDM	P7E0409
o-Xylene	BRL	ug/L	1.0	0.044	1	SM6200 B	5/22/17 23:	24 KDM	P7E0409
Toluene	BRL	ug/L	1.0	0.044	1	SM6200 B	5/22/17 23:	24 KDM	P7E0409
Xylenes, total	BRL	ug/L	3.0	0.15	1	SM6200 B	5/22/17 23:	24 KDM	P7E0409
			Surrogate			Recove	əry	Control	Limits
			4-Bromofluo	robenzene		96	%	70-130	
			Dibromofluo	romethane		117	%	70-130	
			Toluene-d8			100	%	70-130	
Volatile Petroleum Hydrocarb	oons by GC/PID/FID								
C5-C8 Aliphatics	BRL	ug/L	50	6.1	1	MADEP VPH	5/18/17 18:	56 CGP	P7E0382
C9-C12 Aliphatics	BRL	ug/L	50	1.9	1	MADEP VPH	5/18/17 18:	56 CGP	P7E0382
C9-C10 Aromatics	BRL	ug/L	50	0.28	1	MADEP VPH	5/18/17 18:	56 CGP	P7E0382
			Surrogate			Recove	ery	Control	Limits
			2,5-Dibromo	toluene (Pl	D)	100	%	70-130	
			2,5-Dibromo	toluene (Fl	D)	105	%	70-130	

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003

Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Volatile Organic 602 Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7E0409 - SM6200 B										
Blank (P7E0409-BLK1)				Prepared	& Analyze	d: 05/22/1	7			
Benzene	BRL	0.50	ug/L							
Chlorobenzene	BRL	0.50	ug/L							
Ethylbenzene	BRL	1.0	ug/L							
Isopropyl Ether	BRL	5.0	ug/L							
m,p-Xylenes	BRL	2.0	ug/L							
Methyl-tert-Butyl Ether	BRL	5.0	ug/L							
Naphthalene	BRL	5.0	ug/L							
o-Xylene	BRL	1.0	ug/L							
Toluene	BRL	1.0	ug/L							
Xylenes, total	BRL	3.0	ug/L							
Surrogate: 4-Bromofluorobenzene	46.4		ug/L	50.00		93	70-130			
Surrogate: Dibromofluoromethane	51.9		ug/L	50.00		104	70-130			
Surrogate: Toluene-d8	44.9		ug/L	50.00		90	70-130			
LCS (P7E0409-BS1)				Prepared	& Analyze	d: 05/22/1	7			
Benzene	22.4	0.50	ug/L	20.00		112	70-130			
Chlorobenzene	20.6	0.50	ug/L	20.00		103	70-130			
Ethylbenzene	20.8	1.0	ug/L	20.00		104	70-130			
Isopropyl Ether	21.6	5.0	ug/L	20.00		108	70-130			
m,p-Xylenes	40.9	2.0	ug/L	40.00		102	70-130			
Methyl-tert-Butyl Ether	20.1	5.0	ug/L	20.00		100	70-130			
Naphthalene	17.0	5.0	ug/L	20.00		85	70-130			
o-Xylene	19.7	1.0	ug/L	20.00		99	70-130			
Toluene	22.1	1.0	ug/L	20.00		110	70-130			
Xylenes, total	60.7	3.0	ug/L	60.00		101	70-130			
Surrogate: 4-Bromofluorobenzene	45.9		ug/L	50.00		92	70-130			
Surrogate: Dibromofluoromethane	50.0		ug/L	50.00		100	70-130			
Surrogate: Toluene-d8	45.0		ug/L	50.00		90	70-130			

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 5/26/17

Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Volatile Organic 602 Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7E0409 - SM6200 B										
LCS Dup (P7E0409-BSD1)				Prepared	& Analyze	d: 05/22/1	7			
Benzene	21.3	0.50	ug/L	20.00		107	70-130	5	20	
Chlorobenzene	20.3	0.50	ug/L	20.00		101	70-130	2	20	
Ethylbenzene	20.3	1.0	ug/L	20.00		101	70-130	3	20	
Isopropyl Ether	20.9	5.0	ug/L	20.00		104	70-130	3	20	
m,p-Xylenes	40.3	2.0	ug/L	40.00		101	70-130	2	20	
Methyl-tert-Butyl Ether	19.6	5.0	ug/L	20.00		98	70-130	2	20	
Naphthalene	18.3	5.0	ug/L	20.00		92	70-130	7	20	
o-Xylene	19.7	1.0	ug/L	20.00		98	70-130	0.4	20	
Toluene	21.1	1.0	ug/L	20.00		105	70-130	5	20	
Xylenes, total	60.0	3.0	ug/L	60.00		100	70-130	1	20	
Surrogate: 4-Bromofluorobenzene	45.0		ug/L	50.00		90	70-130			
Surrogate: Dibromofluoromethane	49.8		ug/L	50.00		100	70-130			
Surrogate: Toluene-d8	46.6		ug/L	50.00		93	70-130			

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 5/26/17

Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7E0398 - 625										
Blank (P7E0398-BLK1)				Prepared:	05/22/17	Analyzed:	05/23/17			
1,2,4-Trichlorobenzene	BRL	10	ug/L							
1,2-Dichlorobenzene	BRL	10	ug/L							
1,3-Dichlorobenzene	BRL	10	ug/L							
1,4-Dichlorobenzene	BRL	10	ug/L							
1-Methylnaphthalene	BRL	10	ug/L							
2,4,6-Trichlorophenol	BRL	10	ug/L							
2,4-Dichlorophenol	BRL	10	ug/L							
2,4-Dimethylphenol	BRL	10	ug/L							
2,4-Dinitrophenol	BRL	10	ug/L							
2,4-Dinitrotoluene	BRL	10	ug/L							
2,6-Dinitrotoluene	BRL	10	ug/L							
2-Chloronaphthalene	BRL	10	ug/L							
2-Chlorophenol	BRL	10	ug/L							
2-Methylnaphthalene	BRL	10	ug/L							
2-Nitrophenol	BRL	10	ug/L							
3,3'-Dichlorobenzidine	BRL	10	ug/L							
3/4-Methylphenol	BRL	10	ug/L							
1,6-Dinitro-2-methylphenol	BRL	10	ug/L							
1-Bromophenyl phenyl ether	BRL	10	ug/L							
1-Chloro-3-methylphenol	BRL	10	ug/L							
I-Chloroaniline	BRL	10	ug/L							
I-Chlorophenyl phenyl ether	BRL	10	ug/L							
I-Nitrophenol	BRL	50	ug/L							
Acenaphthene	BRL	10	ug/L							
Acenaphthylene	BRL	10	ug/L							
Anthracene	BRL	10	ug/L							
Benzidine	BRL	100	ug/L							
Benzo(a)anthracene	BRL	10	ug/L							
Benzo(a)pyrene	BRL	10	ug/L							
Benzo(b)fluoranthene	BRL	10	ug/L							
Benzo(g,h,i)perylene	BRL	10	ug/L							
Benzo(k)fluoranthene	BRL	10	ug/L							
Benzoic Acid	BRL	100	ug/L							
Benzyl alcohol	BRL	10	ug/L							
bis(2-Chloroethoxy)methane	BRL	10	ug/L							
Bis(2-Chloroethyl)ether	BRL	10	ug/L							
Bis(2-chloroisopropyl)ether	BRL	10	ug/L							
Bis(2-Ethylhexyl)phthalate	BRL	10	ug/L							
Butyl benzyl phthalate	BRL	10	ug/L							
Chrysene	BRL	10	ug/L							
Dibenzo(a,h)anthracene	BRL	10	ug/L							
Dibenzofuran	BRL	10	ug/L							
Diethyl phthalate	BRL	10	ug/L							
Dimethyl phthalate	BRL	10	ug/L							
Di-n-butyl phthalate	BRL	10	ug/L							

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 5/26/17

Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			-			-				
Batch P7E0398 - 625				Droporod	· 05/22/17	Apolyzod	05/02/17			
Blank (P7E0398-BLK1) Fluoranthene	BRL	10	ug/L	Flepaleu	: 05/22/17	Analyzeu	03/23/17			
Fluorene	BRL	10	ug/L							
Hexachlorobenzene	BRL	10	ug/L							
Hexachlorobutadiene	BRL	10	ug/L							
Hexachlorocyclopentadiene	BRL	10	ug/L							
Hexachloroethane	BRL	10	ug/L							
Indeno(1,2,3-cd)pyrene	BRL	10	ug/L							
Isophorone	BRL	10	ug/L							
Naphthalene	BRL	10	ug/L							
Nitrobenzene	BRL	10	ug/L							
N-Nitrosodimethylamine	BRL	10	ug/L							
N-Nitroso-di-n-propylamine	BRL	10	ug/L ug/L							
N-Nitrosodiphenylamine	BRL	10 10	-							
	BRL	10 10	ug/L							
Pentachlorophenol Phenanthrene	BRL	10 10	ug/L							
	BRL		ug/L							
Phenol		10	ug/L							
Pyrene	BRL Not Detected	10	ug/L							
Tentatively Identified Compounds	Not Detected		ug/L							
Surrogate: 2,4,6-Tribromophenol	33.4		ug/L	100.0		33	31-144			
Surrogate: 2-Fluorobiphenyl	40.3		ug/L	50.00		81	49-118			
Surrogate: 2-Fluorophenol	41.9		ug/L	100.0		42	22-84			
Surrogate: Nitrobenzene-d5	33.7		ug/L	50.00		67	43-123			
Surrogate: Phenol-d5	37.1		ug/L	100.0		37	10-63			
Surrogate: Terphenyl-d14	52.0		ug/L	50.00		104	49-151			
LCS (P7E0398-BS1)				-	: 05/22/17	Analyzed	05/23/17			
1,2,4-Trichlorobenzene	59.1	10	ug/L	100.0		59	44-142			
1,2-Dichlorobenzene	58.8	10	ug/L	100.0		59	32-129			
1,3-Dichlorobenzene	58.2	10	ug/L	100.0		58	20-124			
1,4-Dichlorobenzene	57.2	10	ug/L	100.0		57	20-124			
1-Methylnaphthalene	70.6	10	ug/L	100.0		71	40-135			
2,4,6-Trichlorophenol	51.2	10	ug/L	100.0		51	37-144			
2,4-Dichlorophenol	64.1	10	ug/L	100.0		64	39-135			
2,4-Dimethylphenol	79.6	10	ug/L	100.0		80	32-119			
2,4-Dinitrophenol	28.9	10	ug/L	100.0		29	10-191			
2,4-Dinitrotoluene	80.2	10	ug/L	100.0		80	39-139			
2,6-Dinitrotoluene	75.5	10	ug/L	100.0		75	50-158			
2-Chloronaphthalene	72.4	10	ug/L	100.0		72	60-118			
2-Chlorophenol	66.3	10	ug/L	100.0		66	23-134			
2-Methylnaphthalene	66.0	10	ug/L	100.0		66	18-121			
2-Nitrophenol	55.3	10	ug/L	100.0		55	29-182			
3,3'-Dichlorobenzidine	80.8	10	ug/L	100.0		81	10-262			
3/4-Methylphenol	57.4	10	ug/L	100.0		57	76-107			
4,6-Dinitro-2-methylphenol	34.0	10	ug/L	100.0		34	10-181			
4-Bromophenyl phenyl ether	87.1	10	ug/L	100.0		87	53-127			
4-Chloro-3-methylphenol	84.4	10	ug/L	100.0		84	22-147			
4-Chloroaniline	75.2	10	ug/L	100.0		75	44-163			

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 5/26/17

Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7E0398 - 625									
LCS (P7E0398-BS1)				Prepared	: 05/22/17 Analyze	ed: 05/23/17			
4-Chlorophenyl phenyl ether	68.5	10	ug/L	100.0	69	25-158			
4-Nitrophenol	20.2	50	ug/L	100.0	20	10-132			J
Acenaphthene	78.8	10	ug/L	100.0	79	47-145			
Acenaphthylene	82.4	10	ug/L	100.0	82	33-145			
Anthracene	101	10	ug/L	100.0	101	27-133			
Benzidine	21.6	100	ug/L	100.0	22	15-150			J
Benzo(a)anthracene	85.4	10	ug/L	100.0	85	33-143			
Benzo(a)pyrene	83.2	10	ug/L	100.0	83	17-163			
Benzo(b)fluoranthene	81.0	10	ug/L	100.0	81	24-159			
Benzo(g,h,i)perylene	69.9	10	ug/L	100.0	70	10-219			
Benzo(k)fluoranthene	83.7	10	ug/L	100.0	84	11-162			
Benzoic Acid	8.98	100	ug/L	100.0	9	10-125			L1, J
Benzyl alcohol	75.8	10	ug/L	100.0	76	16-107			, -
bis(2-Chloroethoxy)methane	72.2	10	ug/L	100.0	72	33-184			
Bis(2-Chloroethyl)ether	64.8	10	ug/L	100.0	65	12-158			
Bis(2-chloroisopropyl)ether	70.6	10	ug/L	100.0	71	36-166			
Bis(2-Ethylhexyl)phthalate	93.2	10	ug/L	100.0	93	10-158			
Butyl benzyl phthalate	71.0	10	ug/L	100.0	71	10-152			
Chrysene	86.0	10	ug/L	100.0	86	17-168			
Dibenzo(a,h)anthracene	74.1	10	ug/L	100.0	74	10-227			
Dibenzofuran	80.0	10	ug/L	100.0	80	39-114			
Diethyl phthalate	53.6	10	ug/L	100.0	54	10-114			
Dimethyl phthalate	20.4	10	ug/L	100.0	20	10-112			
	83.4	10	ug/L	100.0	83	10-112			
Di-n-butyl phthalate Di-n-octyl phthalate	92.5	10	ug/L	100.0	92	10-118			
Fluoranthene	94.7	10		100.0	92	26-137			
Fluorene	73.8	10	ug/L	100.0	95 74	20-137 59-121			
Hexachlorobenzene	85.7	10	ug/L	100.0	86	10-152			
	54.1		ug/L		54				
Hexachlorobutadiene		10	ug/L	100.0 100.0	54 14	24-116			L
Hexachlorocyclopentadiene	13.8	10	ug/L		52	32-117			L
Hexachloroethane	52.3	10	ug/L	100.0		40-113			
Indeno(1,2,3-cd)pyrene	76.6	10	ug/L	100.0	77 72	10-171			
Isophorone	71.7	10	ug/L	100.0		21-196			
Naphthalene	67.2	10	ug/L	100.0	67	21-133			
Nitrobenzene	68.9	10	ug/L	100.0	69	35-180			
N-Nitrosodimethylamine	56.1	10	ug/L	100.0	56	10-119			
N-Nitroso-di-n-propylamine	72.6	10	ug/L	100.0	73	10-230			
N-Nitrosodiphenylamine	105	10	ug/L	100.0	105	69-152			
Pentachlorophenol	52.9	10	ug/L	100.0	53	14-176			
Phenanthrene	99.0	10	ug/L	100.0	99	54-120			
Phenol	35.2	10	ug/L	100.0	35	10-112			
Pyrene	89.8	10	ug/L	100.0	90	52-115			
Surrogate: 2,4,6-Tribromophenol	51.7		ug/L	100.0	52	31-144			
Surrogate: 2-Fluorobiphenyl	35.0		ug/L	50.00	70	49-118			
Surrogate: 2-Fluorophenol	41.3		ug/L	100.0	41	22-84			
Surrogate: Nitrobenzene-d5	33.1		ug/L	50.00	66	43-123			

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7E0398 - 625										
LCS (P7E0398-BS1)				Prepared:	05/22/17	Analyzed	: 05/23/17			
Surrogate: Phenol-d5	32.7		ug/L	100.0		33	10-63			
Surrogate: Terphenyl-d14	47.4		ug/L	50.00		95	49-151			
LCS Dup (P7E0398-BSD1)				Prepared:	05/22/17	Analvzed	: 05/23/17			
1,2,4-Trichlorobenzene	56.5	10	ug/L	100.0	00/22/	57	44-142	4	20	
1,2-Dichlorobenzene	58.1	10	ug/L	100.0		58	32-129	1	20	
1,3-Dichlorobenzene	56.6	10	ug/L	100.0		57	20-124	3	20	
1,4-Dichlorobenzene	55.8	10	ug/L	100.0		56	20-124	3	20	
1-Methylnaphthalene	68.4	10	ug/L	100.0		68	40-135	3	20	
2,4,6-Trichlorophenol	77.5	10	ug/L	100.0		77	37-144	41	20	D
2,4-Dichlorophenol	68.1	10	ug/L	100.0		68	39-135	6	20	
2,4-Dimethylphenol	79.9	10	ug/L	100.0		80	32-119	0.3	20	
2,4-Dinitrophenol	78.0	10	ug/L	100.0		78	10-191	92	20	D
2,4-Dinitrotoluene	78.4	10	ug/L	100.0		78	39-139	2	20	
2,6-Dinitrotoluene	91.9	10	ug/L	100.0		92	50-158	20	20	
2-Chloronaphthalene	74.6	10	ug/L	100.0		75	60-118	3	20	
2-Chlorophenol	73.8	10	ug/L	100.0		74	23-134	11	20	
2-Methylnaphthalene	63.9	10	ug/L	100.0		64	18-121	3	20	
2-Nitrophenol	68.8	10	ug/L	100.0		69	29-182	22	20	D
3,3'-Dichlorobenzidine	82.3	10	ug/L	100.0		82	10-262	2	20	
3/4-Methylphenol	57.9	10	ug/L	100.0		58	76-107	0.8	20	L
4,6-Dinitro-2-methylphenol	68.7	10	ug/L	100.0		69	10-181	67	20	D
4-Bromophenyl phenyl ether	75.3	10	ug/L	100.0		75	53-127	15	20	
4-Chloro-3-methylphenol	84.9	10	ug/L	100.0		85	22-147	0.6	20	
4-Chloroaniline	74.6	10	ug/L	100.0		75	44-163	0.9	20	
4-Chlorophenyl phenyl ether	75.3	10	ug/L	100.0		75	25-158	9	20	
4-Nitrophenol	35.9	50	ug/L	100.0		36	10-132	56	20	D, J
Acenaphthene	80.1	10	ug/L	100.0		80	47-145	2	20	,
Acenaphthylene	79.7	10	ug/L	100.0		80	33-145	3	20	
Anthracene	83.4	10	ug/L	100.0		83	27-133	19	20	
Benzidine	22.7	100	ug/L	100.0		23	15-150	5	20	J
Benzo(a)anthracene	87.2	10	ug/L	100.0		87	33-143	2	20	
Benzo(a)pyrene	88.7	10	ug/L	100.0		89	17-163	6	20	
Benzo(b)fluoranthene	83.2	10	ug/L	100.0		83	24-159	3	20	
Benzo(g,h,i)perylene	70.5	10	ug/L	100.0		71	10-219	0.8	20	
Benzo(k)fluoranthene	84.3	10	ug/L	100.0		84	11-162	0.7	20	
Benzoic Acid	26.9	100	ug/L	100.0		27	10-125	100	20	D, J
Benzyl alcohol	75.3	10	ug/L	100.0		75	16-107	0.7	20	
bis(2-Chloroethoxy)methane	72.9	10	ug/L	100.0		73	33-184	0.9	20	
Bis(2-Chloroethyl)ether	63.8	10	ug/L	100.0		64	12-158	2	20	
Bis(2-chloroisopropyl)ether	70.4	10	ug/L	100.0		70	36-166	0.3	20	
Bis(2-Ethylhexyl)phthalate	92.3	10	ug/L	100.0		92	10-158	1	20	
Butyl benzyl phthalate	86.5	10	ug/L	100.0		86	10-152	20	20	
Chrysene	88.4	10	ug/L	100.0		88	17-168	3	20	
Dibenzo(a,h)anthracene	74.5	10	ug/L	100.0		75	10-227	0.5	20	
Dibenzofuran	71.8	10	ug/L	100.0		72	39-114	11	20	
Diethyl phthalate	58.0	10	ug/L	100.0		58	10-114	8	20	

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 5/26/17

Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7E0398 - 625										
LCS Dup (P7E0398-BSD1)				Prepared:	: 05/22/17	Analyzed	: 05/23/17			
Dimethyl phthalate	22.0	10	ug/L	100.0		22	10-112	8	20	
Di-n-butyl phthalate	68.4	10	ug/L	100.0		68	10-118	20	20	
Di-n-octyl phthalate	91.4	10	ug/L	100.0		91	10-146	1	20	
Fluoranthene	79.9	10	ug/L	100.0		80	26-137	17	20	
Fluorene	81.8	10	ug/L	100.0		82	59-121	10	20	
Hexachlorobenzene	77.9	10	ug/L	100.0		78	10-152	9	20	
Hexachlorobutadiene	51.9	10	ug/L	100.0		52	24-116	4	20	
Hexachlorocyclopentadiene	13.8	10	ug/L	100.0		14	32-117	0.3	20	L
Hexachloroethane	51.2	10	ug/L	100.0		51	40-113	2	20	
Indeno(1,2,3-cd)pyrene	92.7	10	ug/L	100.0		93	10-171	19	20	
Isophorone	73.2	10	ug/L	100.0		73	21-196	2	20	
Naphthalene	65.1	10	ug/L	100.0		65	21-133	3	20	
Nitrobenzene	68.3	10	ug/L	100.0		68	35-180	0.8	20	
N-Nitrosodimethylamine	56.5	10	ug/L	100.0		56	10-119	0.7	20	
N-Nitroso-di-n-propylamine	72.9	10	ug/L	100.0		73	10-230	0.5	20	
N-Nitrosodiphenylamine	94.0	10	ug/L	100.0		94	69-152	11	20	
Pentachlorophenol	87.6	10	ug/L	100.0		88	14-176	49	20	D
Phenanthrene	84.0	10	ug/L	100.0		84	54-120	16	20	
Phenol	37.7	10	ug/L	100.0		38	10-112	7	20	
Pyrene	104	10	ug/L	100.0		104	52-115	15	20	
Surrogate: 2,4,6-Tribromophenol	75.9		ug/L	100.0		76	31-144			
Surrogate: 2-Fluorobiphenyl	36.2		ug/L	50.00		72	49-118			
Surrogate: 2-Fluorophenol	52.8		ug/L	100.0		53	22-84			
Surrogate: Nitrobenzene-d5	33.1		ug/L	50.00		66	43-123			
Surrogate: Phenol-d5	34.6		ug/L	100.0		35	10-63			
Surrogate: Terphenyl-d14	50.3		ug/L	50.00		101	49-151			

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Volatile Petroleum Hydrocarbons by GC/PID/FID - Quality Control

Analyte Result Limit Units Level Result %REC Limits RPD Limit Batch P7E0382 - MADEP VPH (W)	Notes
Blank (P7E0382-BLK1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics BRL 50 ug/L C9-C12 Aliphatics BRL 50 ug/L C9-C10 Aromatics BRL 50 ug/L Surrogate: 2,5-Dibromotoluene (PID) 98.9 ug/L 100.0 99 70-130 Surrogate: 2,5-Dibromotoluene (FID) 105 ug/L 100.0 105 70-130 LCS (P7E0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 300.0 119 70-130 LCS (P7E0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 100.0 101 70-130 C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0	
C5-C8 Aliphatics BRL 50 ug/L C9-C12 Aliphatics BRL 50 ug/L C9-C10 Aromatics BRL 50 ug/L Surrogate: 2,5-Dibromotoluene (PID) 98.9 ug/L 100.0 99 70-130 Surrogate: 2,5-Dibromotoluene (FID) 105 ug/L 100.0 105 70-130 LCS (P7E0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 300.0 119 70-130 C9-C12 Aliphatic 354 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 100.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
C9-C12 Aliphatics BRL 50 ug/L C9-C10 Aromatics BRL 50 ug/L Surrogate: 2,5-Dibromotoluene (PID) 98.9 ug/L 100.0 99 70-130 Surrogate: 2,5-Dibromotoluene (FID) 105 ug/L 100.0 105 70-130 LCS (PTE0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 100.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 101 70-130	
C9-C10 Aromatics BRL 50 ug/L Surrogate: 2,5-Dibromotoluene (PID) 98.9 ug/L 100.0 99 70-130 Surrogate: 2,5-Dibromotoluene (FID) 105 ug/L 100.0 105 70-130 LCS (P7E0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
Surrogate: 2,5-Dibromotoluene (PID) 98.9 ug/L 100.0 99 70-130 Surrogate: 2,5-Dibromotoluene (FID) 105 ug/L 100.0 105 70-130 LCS (P7E0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
Surrogate: 2,5-Dibromotoluene (FID) 105 ug/L 100.0 105 70-130 LCS (P7E0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
LCS (P7E0382-BS1) Prepared & Analyzed: 05/18/17 C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
C5-C8 Aliphatics 357 50 ug/L 300.0 119 70-130 C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
C9-C10 Aromatics 101 50 ug/L 100.0 101 70-130 C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
C9-C12 Aliphatic 354 50 ug/L 300.0 118 70-130 Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
Surrogate: 2,5-Dibromotoluene (PID) 98.6 ug/L 100.0 99 70-130	
Surragete: 2.5 Dibromotolyong (EID) 102 ug/l 100.0 102 70.120	
Surrogate: 2,5-Dibromotoluene (FID) 103 ug/L 100.0 103 70-130	
LCS Dup (P7E0382-BSD1) Prepared & Analyzed: 05/18/17	
C5-C8 Aliphatics 354 50 ug/L 300.0 118 70-130 0.7 50	
C9-C10 Aromatics 99.5 50 ug/L 100.0 99 70-130 1 50	
C9-C12 Aliphatic 349 50 ug/L 300.0 116 70-130 1 50	
Surrogate: 2,5-Dibromotoluene (PID) 99.5 ug/L 100.0 99 70-130	
Surrogate: 2,5-Dibromotoluene (FID) 104 ug/L 100.0 104 70-130	

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Extractable Petroleum Hydrocarbons by GC/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7E0441 - MADEP EPH (W)										
Blank (P7E0441-BLK1)				Prepared	& Analyze	d: 05/24/1	7			
C9-C18 Aliphatics	BRL	350	ug/L							
C19-C36 Aliphatics	BRL	500	ug/L							
C11-C22 Aromatics	BRL	100	ug/L							
Surrogate: 1-Chlorooctadecane	14.6		ug/L	20.00		73	40-140			
Surrogate: o-Terphenyl	13.5		ug/L	20.00		68	40-140			
Surrogate: 2-Fluorobiphenyl	32.6		ug/L	40.00		82	40-140			
Surrogate: 2-Bromonaphthalene	41.5		ug/L	40.00		104	40-140			
LCS (P7E0441-BS1)				Prepared	& Analyze	d: 05/24/1	7			
C9-C18 Aliphatics	329	350	ug/L	600.0		55	40-140			J
C19-C36 Aliphatics	818	500	ug/L	800.0		102	40-140			
C11-C22 Aromatics	1430	100	ug/L	1700		84	40-140			
Surrogate: 1-Chlorooctadecane	14.9		ug/L	20.00		75	40-140			
Surrogate: o-Terphenyl	15.7		ug/L	20.00		79	40-140			
Surrogate: 2-Fluorobiphenyl	36.3		ug/L	40.00		91	40-140			
Surrogate: 2-Bromonaphthalene	45.1		ug/L	40.00		113	40-140			
LCS Dup (P7E0441-BSD1)				Prepared	& Analyze	d: 05/24/1	7			
C9-C18 Aliphatics	308	350	ug/L	600.0		51	40-140	7	50	J
C19-C36 Aliphatics	893	500	ug/L	800.0		112	40-140	9	50	
C11-C22 Aromatics	1400	100	ug/L	1700		82	40-140	3	50	
Surrogate: 1-Chlorooctadecane	16.0		ug/L	20.00		80	40-140			
Surrogate: o-Terphenyl	15.1		ug/L	20.00		76	40-140			
Surrogate: 2-Fluorobiphenyl	36.3		ug/L	40.00		91	40-140			
Surrogate: 2-Bromonaphthalene	44.3		ug/L	40.00		111	40-140			

Project: American Legion - Chapel Hill TCH.003 Project No: TCLT.003 Prism Work Order: 7050329 Time Submitted: 5/18/2017 8:40:00AM

Diesel Range Organics by GC/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7E0349 - 3546										
Blank (P7E0349-BLK1)			F	Prepared	& Analyze	d: 05/18/1	7			
Diesel Range Organics	BRL	6.9	mg/kg wet							
Surrogate: o-Terphenyl	1.20		mg/kg wet	1.314		91	49-124			
LCS (P7E0349-BS1)			F	Prepared	& Analyze	d: 05/18/1	7			
Diesel Range Organics	57.6	6.9	mg/kg wet	65.49		88	55-109			
Surrogate: o-Terphenyl	1.21		mg/kg wet	1.310		93	49-124			
LCS Dup (P7E0349-BSD1)			F	Prepared	& Analyze	d: 05/18/1	7			
Diesel Range Organics	58.6	6.9	mg/kg wet	65.47		89	55-109	2	20	
Surrogate: o-Terphenyl	1.30		mg/kg wet	1.309		100	49-124			

Sample Extraction Data

Prep Method: 3546

Lab Number	Batch	Initial	Final	Date/Time
7050329-01	P7E0349	30.63 g	1 mL	05/18/17 10:15
7050329-02	P7E0349	30.3 g	1 mL	05/18/17 10:15
7050329-03	P7E0349	30.59 g	1 mL	05/18/17 10:15

Prep Method: MADEP EPH (W)

Lab Number	Batch	Initial	Final	Date/Time
7050329-04	P7E0441	1000 mL	2 mL	05/24/17 8:45

Prep Method: Solids, Dry Weight

Lab Number	Batch	Initial	Final	Date/Time
7050329-01	P7E0377	30 g	30 g	05/18/17 16:45
7050329-02	P7E0377	30 g	30 g	05/18/17 16:45
7050329-03	P7E0377	30 g	30 g	05/18/17 16:45

Prep Method: 625

Lab Number	Batch	Initial	Final	Date/Time
7050329-04	P7E0398	990 mL	1 mL	05/22/17 8:45

Prep Method: SM6200 B

Lab Number	Batch	Initial	Final	Date/Time
7050329-04	P7E0409	10 mL	10 mL	05/22/17 10:57
Prep Method: MADEP VP	H (W)			
Lab Number	Batch	Initial	Final	Date/Time
7050329-04	P7E0382	44 mL	44 mL	05/18/17 12:48

LAB USE DNLY	rival?	tts indicated 3		HEADSPACE?	Observed: 4, 2 = c / Corr. 3, 0 = c	й Ш d			ection: Ves / NO	<u>e</u> .	ID NO.	H= hold OI	H=hold 02	H= hold 03	70	Have Staylit	(bru)	PRESS DOWN FIRMLY - 3 COPIES	PRISM USE ONLY	comments: Site Arrival Time:		Field Tech Fae:	Mileage		SEE REVERSE FOR TERMS & CONDITIONS	ORIGINAL
	Samples INTACT upon arrival?	Received ON WET ICE?		VOLATILES rec'd W/OUT HEADSPACE?	TEMP: Therm ID: NKT	TO BE FILLED IN BY CLIENT/SAMPLING	Certification: NELAC	Motor Chlorinotod: VES	on C	ANALYSIS REQUESTED	Ž		osalaso otices otices otices	and pro-		concelled by Joe S		¥	ust be	Military/Hours Additional Comments:	7 14 17	7 08/15	2 08-10			ero Head Space)
CUSTODY RECORD	# To ensure proper Billing:	1-2/0	Short Hold Analysis: (Tes) (NO) USI Project: (Tes) (NO) *Please ATTACH any project specific reporting (QC LEVEL I II II IV) provisions and/or QC Requirements	hent		TCH DC	1 Day 🔲 2 Days 🛄 3 Days 🔟 4 Days 👰 5 Days 6-0 Days 🗐 Standard 10 days 🔲 Rush Work Must Be	ed next business day.	Internation	CZ.	THE T	agadooo	wethanol V H H	Wethered V # H	inima and and and and and and and and and an	the do c			quested above. Any changes n	ave deen innialized. Date	5/17/1	SAR			SC DIACTOR DIACTOR	= Volatile Organic
AIN OF CUST	QUOTE	1 C M - 00	Short Hold Analysis: (Tes) (NO) *Please ATTACH any project specific provisions and/or QC Requirements	· ANNO NS C		/Billing Reference	ate 🛛	Samples received after 14:00 will be processed next business day	around time is based on business days, excluding weekening and (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES FRINDERED BY PRISM LABORATORIES, INC. TO CLIENT)	SAMPLE CONTAINER	NO. SIZE	1997 1997 1997	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 m (-	6 40m L				proceed with the analyses as rec	any changes after analyses hi nature)		let.	m Laboratories By:	NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.	CRA: NC D	P = Plastic; TL = Teflon-Lined Cap VOA
	Page		man	L.	1	- Amb	- CUIN		Ral	MATRIX	Y WATER OR *TYPE SLUDGE) SEE BELOW	50:1 VoA	201 1 VON	50, 1 20	6				authorization for Prism to proce	There will be charges for any c Received Bv: (Signature)		C-Received By: (Signature	40 Reberved For Prism Laboratories	BE TAPED SHUT WITH CUSTODY RIFIED AGAINST COC UNTIL REC X	NUC D SC	G= Glass
	Environmental Solutions	Laboratories, inc. srindbrook Road • Charlotte, NC 28.	29-6364 · Fax: 704	20 Toe	VC 2.760 7	6	<u>Excel V Other</u>		Address: 1714 Legium		COLLECTED MILITARY HOURS	5/11/17 1010		2 2 2 2	1 1500				Sampler's Signature <u>for Autom Marthon</u> Sampled By (Print Name) <u>LC</u> Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed wit	the Prism Project Manager.	20 all	M	57877 OYA	ALL SAMPLE COOLERS SHOULD ES ARE NOT ACCEPTED AND VE	ы ——	ODES: A=Amber C=Clear
	PRISM	449 Sprinch	Phone 704/529-6364 Client Company Name:	Report To/Contact Name:	Keporung Address: 222	Phone: 919-844-4	Email Address: <u>J 5 7</u> FDD Tvne: PDF / Ex	Site Location Name:	Site Location Physical Address: <u>17/4</u> Chape H. I, NC		SAMPLE DESCRIPTION	58-6	58-7	58-82	TMW-1				Sampler's Signature	Submitted in writing to t		Relinquished By: (Signature)	Inquished By: (Sign	hod of Shipment:	lin -	ONTAINER TYPE CODES: